
Math 2270-004  Week 7 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  4.1-.4.3.   

Tues Feb 20
       4.1  Vector spaces and subspaces.
     

Announcements: 

Warm-up Exercise:

 



We dealt with vector equations - linear combination equations -  a lot, in Chapters 1-2.  There are other 
objects, for example functions, that one can add and scalar mutiply.  The useful framework that includes 
these other examples is the abstract concept of a vector space.  There is a body of results that only depends
on the axioms below, and not on the particular vector space in which one is working.  So rather than redo 
those results in different-seeming contexts, we understand them once abstractly, in order to apply them in 
many places.  And, we can visualize the abstractions be relying on our solid foundation in n.

Definition  A vector space  is a nonempty set V of objects, called vectors, on which are defined two 
operations, called addition and scalar multiplication, so that the ten axioms listed below hold.  These 
axioms must hold for all vectors u, v, w in V, and for all scalars c, d .  

1.  The sum of u and v, denoted by u v, is (also) in V      (closure under addition.)

2.  u v = v u     (commutative property of addition)

3.  u v w = u v w    (associative property of addition)

4.  There is a zero vector 0 in V so that u 0 = u.    (additive identity)

5.  For each u V there is a vector u V so that u u = 0.   (additive inverses)

6.  The scalar multiple of u by c, denoted by c u is (also) in V.  (closure under scalar multiplication)

7.  c u v  = c u  c v      (scalar multiplication distributes over vector addition)

8.  c d  u = c u  d u.     (scalar addition distributes over scalar multiplication of vectors)

9.  c d u = c d  u    (associative property of scalar multiplication)

10.  1 u = u   (multiplicative identity)

The following three algebra rules follow from the first 10, and are also useful:

11)   0 u = 0.

12)  c 0 = 0 .

13)  u = 1  u.



Example 1  n, n 1 a positive integer, with vector addition and scalar multiplication defined component-
wise, and with the zero vector being the vector which has every entry equal to zero.  Then the properties 
above just reduce to properties of real number algebra.

Example 2   The space of m n matrices (with m, n  fixed), with matrix addition and scalar multiplication 
defined component-wise, and with the zero vector being the matrix which has every entry equal to zero.

Example 3  The set  S  of doubly-infinite sequences of numbers.  (Think of this as discrete time signals.)  
So an element of S can be written as

yk  =  .... y 2 , y 1 , y0 , y1 , y2, y3 , . . .  

If  zk  is another element of   , then the sum yk  zk   is the sequence yk zk , and the scalar 
multiple c yk  is the sequence  c yk  .  Checking the vector space axioms is the same as it would be n, 
since addition and scalar multiplication are done entry by entry.  (There's just infinitely many entries.)  

One can visualize such a discrete time signal in terms of its graph over over its integer "domain".  How 
could you visualize "vector" addition and scalar multiplication in this case?



 Example 4  Let V be the set of all real-value functions defined on a domain D on the real line.  (In practice 
D is usually an interval or the entire real line.)  If f and g are in V, then we define their sum and scalar 
multiples "component-wise" too, where each t D gives a component:

f g t f t g t

c f t   c f t .

So for example, the domain is the entire real line and if f is defined by the rule f t = 1 2 sin 3 t   and 
g is defined by the rule g t = 3 et  then the function f g is defined by the rule

f g t = 1 2 sin 3 t 3 et 

and 7 f is the function defined by the rule
7 f t = 7 1 2 sin 3 t = 7 14 sin 3 t .

Why do the vector space axioms hold?  What is the zero vector in this vector space?   What is the additive 
inverse function?

One can visualize functions in terms of their graphs - just like for the discrete time signals - and then the 
graphs of the sum of two functions or of a scalar multiple of one function, are contructed as you'd expect:



Definition:   A subspace of a vector space V is a subset H of V which is itself a vector space with respect 
to the addition and scalar multiplication in V.  As soon as one verifies a), b), c) below for H, it will be a 
subspace, because H will "inherit" the other axioms just by being contained in V.

a)  The zero vector of V is in H

b)  H is closed under vector addition, i.e. for each u H, v H   then u v H. 

c)  H is closed under scalar multiplication, i.e for each u H, c , then also c u H.

Just to double check that the other properties get inherited:
Definition  A vector space  is a nonempty set V of objects, called vectors, on which are defined two 
operations, called addition and scalar multiplication, so that the ten axioms listed below hold.  These 
axioms must hold for all vectors u, v, w in V, and for all scalars c, d .  

1.  The sum of u and v, denoted by u v, is (also) in V      (closure under addition.)

2.  u v = v u     (commutative property of addition)

3.  u v w = u v w    (associative property of addition)

4.  There is a zero vector 0 in V so that u 0 = u.    (additive identity)

5.  For each u V there is a vector u V so that u u = 0.   (additive inverses)

6.  The scalar multiple of u by c, denoted by c u is (also) in V.  (closure under scalar multiplication)

7.  c u v  = c u  c v      (scalar multiplication distributes over vector addition)

8.  c d  u = c u  d u.     (scalar multiplication distributes over scalar addition)

9.  c d u = c d  u    (associative property of scalar multiplication)

10.  1 u = u   (multiplicative identity)

The following three algebra rules follow from the first 10, and are also useful:

11)   0 u = u.

12)  c 0 = 0 .

13)  u = 1  u.



Big Exercise:  The vector space n has subspaces!  But there aren't very many kinds, it turns out.  (Even 
though there are countless kinds of subsets of n.)  Let's find all the possible kinds of subspaces of 3, 
using our expertise with matrix reduced row echelon form.





Wed Feb 21
          4.1-4.2  Vector spaces and subspaces;  null spaces, column spaces, and the connections to linear 
transformations

Announcements: 

Warm-up Exercise:



We've been discussing the abstract notions of vector spaces and subspaces, with some specific examples 
to help us with our intuition.  Today we continue that discussion.  We'll continue to use exactly the same 
language we used in Chapters 1-2  .... except now it's for general vector spaces:

Let V be a vector space  (Do you recall that definition, at least roughly speaking?)

Definition:  If we have a collection of p vectors v1, v2,  ... vp  in V, then any vector v V that can be 
expressed as a sum of scalar multiples of these vectors is called a linear combination of them.  In other 
words, if we can write

v = c1v1 c2v2  ... cpvp ,

then v is a linear combination of v1, v2,  ... vp .  The scalars c1, c2,..., cp are called the linear combination 
coefficients or weights.

Definition  The span of a collection of vectors, written as span v1, v2, ...  vp  , is the collection of all linear
combinations of those vectors.

Definition: 
a)  An indexed set of vectors  v1, v2,  ... vp  in V is said to be linearly independent if no one of the vectors
is a linear combination of (some) of the other vectors. The concise way to say this is that the only way 0 
can be expressed as a linear combination of these vectors,

c1v1 c2v2  ... cpvp = 0 ,
is for all of the weights c1 = c2 =... = cp = 0 .

b)  An indexed set of vectors  v1, v2,  ... vp  is said to be linearly dependent  if at least one of these 
vectors is a linear combination of (some) of the other vectors.  The concise way to say this is that there is 
some way to write 0 as a linear combination of these vectors

c1v1 c2v2  ... cp vp = 0 

where not all of the cj = 0 .  (We call such an equation a linear dependency.  Note that if we have any such 
linear dependency, then any vj with cj 0 is a linear combination of the remaining vk with k j .  We say
that such a vj is linearly dependent on the remaining vk .)



And from yesterday,

Definition:   A subspace of a vector space V is a subset H of V which is itself a vector space with respect 
to the addition and scalar multiplication in V.  As soon as one verifies a), b), c) below for H, it will be a 
subspace.

a)  The zero vector of V is in H

b)  H is closed under vector addition, i.e. for each u H, v H   then u v H. 

c)  H is closed under scalar multiplication, i.e for each u H, c , then also c u H.

Theorem  (spans are subspaces)  Let V be a vector space, and let v1, v2, ...  vn  be a set of vectors in V.  
Then H = span v1, v2, ...  vn  is a subspace of V.
proof:  We need to check that for H = span v1, v2, ...  vn

a)  The zero vector of V is in H 

b)  H is closed under vector addition, i.e. for each u H, v H   then u v H. 

c)  H is closed under scalar multiplication, i.e for each u H, c , then also c u H.



Remark  Using minimal spanning sets was how we were able to characterize all possible subspace of 3 
yesterday (or today, if we didn't finish on Tuesday).   Can you characterize all possible subsets of  n  in 
this way?

Example:  Let P
n
 be the space of polynomials of degree at most n, 

P
n

= p t = a0 a1 t a2 t2 ...  an tn such that a0, a1, ... an

Note that P
n
 is the span of the n 1  functions

p0 t = 1, p1 t = t, p2 t = t2, ...  pn t = tn.

Although we often consider P
n
 as a vector space on its own, we can also consider it to be a subspace of 

the much larger vector space V of all functions from  to .

Exercise 1  abbreviating the functions by their formulas, we have
P

3
 = span  1, t, t2, t3 .

Are the functions in the set  1, t, t2, t3  linearly independent or linearly dependent?.



4.2  Null spaces, column spaces, and linear transformations from n to m.

Definition Let A be an m n matrix, expressed in column form as A = a1 a2 a3 ... an]  The column space 
of A, written as Col A, is the span of the columns:

Col A = span a1 a2 a3 ... an  .

Equivalently, since

A x = x1 a1  x2 a2  ...  xn an 

we see that Col A is also the range of the linear transformation T : n m  given by T x = A x, i.e 

Col A  = b m such that  b = A x for some x n .

Theorem  By the "spans are subspaces" theorem, Col A  is always a subspace of m.  

Exercise 2a)  Consider 

A =

1 2 0 1 1

2 4 0 2 2

3 6 4 1 7
.

By the Theorem, col A  is a subspace of 3.  Which is it:  0 , a line thru the origin, a plane thru the 
origin, or all of 3.  Hint:

1 2 0 1 1

2 4 0 2 2

3 6 4 1 7
        reduces to   

1 2 0 1 1

0 0 1 1 1

0 0 0 0 0
 .

2b)  Is there a more efficient way to express Col A as a span that doesn't require all five column vectors?



Definition:  If a set of vectors  v1, v2, ...  vn  in a vector space V is linearly independent and also spans V, 
then the collection is called a basis for V.

Exercise 3  Exhibit a basis for col A in Exercise 2.

Exercise 4   Exhibit a basis for P
3
  in Exercise 1



Fri Feb 23
          4.2 - 4.3  nullspaces and column spaces; kernel and range of linear transformations as subspaces.  
Linearly independent sets and bases for vector spaces.

Announcements: 

Warm-up Exercise:



4.2  Null spaces, column spaces, and linear transformations from n to m.

Definition Let A be an m n matrix, expressed in column form as A = a1 a2 a3 ... an]  The column space 
of A, written as Col A, is the span of the columns:

Col A = span a1 a2 a3 ... an  .

Equivalently, since

A x = x1 a1  x2 a2  ...  xn an 

we see that Col A is also the range of the linear transformation T : n m  given by T x = A x, i.e 

Col A  = b m such that  b = A x for some x n .

Theorem  By the "spans are subspaces" theorem, Col A  is always a subspace of m.  

Exercise 2a)  Consider 

A =

1 2 0 1 1

2 4 0 2 2

3 6 4 1 7
.

By the Theorem, col A  is a subspace of 3.  Which is it:  0 , a line thru the origin, a plane thru the 
origin, or all of 3.  Hint:

1 2 0 1 1

2 4 0 2 2

3 6 4 1 7
        reduces to   

1 2 0 1 1

0 0 1 1 1

0 0 0 0 0
 .

2b)  Is there a more efficient way to express Col A as a span that doesn't require all five column vectors?



Definition:  If a set of vectors  v1, v2, ...  vn  in a vector space V is linearly independent and also spans V, 
then the collection is called a basis for V.

Exercise 3  Exhibit a basis for col A in Exercise 2.

Exercise 4   Exhibit a basis for P
3
  in Exercise 1



We've seen that one (explicit) way that subspaces arise is as the span of a specified collection of vectors.  
The primary (implicit) way that subspaces are described is related to the following:

Definition:  The null space of an m n matrix A is the set of x n for which A x = 0.  We denote this 
set by Nul A.   Equivalently, in terms of the associated linear transformation T : n  m given by 
T x = A x, Nul A is the set of points in the domain which are transformed into the zero vector in the 
codomain.

Theorem  Let A be an m n matrix.  Then Nul A is a subspace of n.  

proof:   We need to check that for H = Nul A :

a)  The zero vector of V is in H 

b)  H is closed under vector addition, i.e. for each u H, v H   then u v H. 

c)  H is closed under scalar multiplication, i.e for each u H, c , then also c u H.



Exercise 1a)  For the same matrix A as in Exercise 2 from Wednesday's notes, express the vectors in 
Nul A  explicitly, using the methods of Chapters 1-2.  Notice these are vectors in the domain of the 
associated  linear transformation T : 5  3 given by T x = A x, so are a subspace of 5.

A = 

1 2 0 1 1

2 4 0 2 2

3 6 4 1 7
        reduces to   

1 2 0 1 1

0 0 1 1 1

0 0 0 0 0
 .

1b)  Exhibit a basis for Nul A .



The ideas of nullspace and column space generalize to arbitrary linear transformations between vectors 
spaces - with slightly more general terminology.

Definition  Let V and W be vector spaces.  A function T : V W is called a linear transformation if for 
each x V there is a unique vector T x W and so that

     (i)   T u v = T u T v      for all u, v V

     (ii)  T c u = c T u      for all u V, c

Definition  The kernel (or nullspace) of T  is defined to be u V :  T u = 0 .

Definition  The range of T is  w W :  w = T v  for some v V  .

Theorem  Let T : V W  be a linear transformation.  Then the kernel of T is a subspace of V.  The range 
of T is a subspace of W.

Remark:  The theorem generalizes our earlier one about Nul A and Col A, for matrix transformations 
T : n m, T x = A x.



Exercise 2  Let V be the vector space of real-valued functions f defined on an interval a, b  with the 
property that they are differentiable and that their derivatives are continuous functions on a, b .  Let W be 
the vector space C a, b  of all continous functions on the interval a, b .  Let D : V W be the derivative 
transformation

D f = f  .

2a)  What Calculus differentiation rules tell you that D is a linear transformation?

2b)  What  subspace is the kernel of D ?

2c)  What is the range of D ?


