
Math 2270-004  Week 5 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  2.1-2.3. 

Mon Feb 5
       2.1-2.2  Matrix algebra and matrix inverses

Announcements: 

Warm-up Exercise:

Remember from last week that matrices correspond to linear transformations, and that products of matrices
are the matrices of compositions of linear transformations:

 



2.1 Matrix multiplication

Suppose we take a composition of linear transformations:
T1 : n m,   T1 x  = A x,      Am n .

  
T2 : m p,   T2 y  = B y.      Bp m 

   Then the composition  T2 T1 : n p is linear:
  i       T2 T1 u v  T2 T1 u v                                                                                

= T2 T1 u T1 v      T1  linear            
= T2 T1 u T2 T1 v              T2 linear

 T2 T1 u T2 T1 v                     

 ii       T2 T1 c u  T2 T1 c u                                                                                
= T2 c T1 u      T1  linear  
= c T2  T1 u      T2  linear

 c  T2 T1  u              

   So  T2 T1 : n p is a matrix transformation, by the theorem on the previous page.

     Its jth column is
T2 T1 ej  = T2 A ej                        

= T2 colj A  
= B colj A .

     i.e. the matrix of  T2 T1 : n p is
B a1 B a2  ...   B an    B A.

where colj A = aj .

Summary:   For Bp m  and  Am n  

     the matrix product  BA p n   is defined by
colj B A = B colj A        j = 1 .. n 

     or equivalently
 entryi j B A = rowi B  colj A    i = 1 ..p, j = 1 ..n

     And,
BA x = B A x

because BA is the matrix of  T2 T1 .



2.1 matrix algebra....we already talked about matrix multiplication.  It interacts with matrix addition in 
interesting ways.  We can also add and scalar multiply matrices of the same size, just treating them as 
oddly-shaped vectors:

Matrix algebra:  

     addition and scalar multiplication:  Let Am n, Bm n be two matrices of the same dimensions (m rows 
and n columns).  Let entryi j A = ai j, entryi j B = bi j .  (In this case we write A = ai j , B = bi j  .)  
Let c be a scalar. Then

entryi j A B ai j bi j .
entryi j c A c ai j .

In other words, addition and scalar multiplication are defined analogously as for vectors.  In fact, for these 
two operations you can just think of matrices as vectors written in a rectangular rather than row or column 
format.

Exercise 1)  Let A :=

1 2

3 1

0 3
 and B :=

0 27

5 1

1 1
 .  Compute 4 A B .

vector properties of matrix addition and scalar multiplication

But other properties you're used to do hold:
      is commutative                                       A B = B A  

 entryij A B = aij bij = bij aij = entryij B A
      is associative                                         A B C = A B C  

the ij entry of each side is aij bij cij 
     scalar multiplication distributes over     c A B = cA cB .

ij entry of LHS is c aij bij = c aij bij = ij entry of RHS  



More interesting are how matrix multiplication and addition interact:

Check some of the following.  Let In be the n n identity matrix, with In x = x   for all x n .  Let 
A, B, C have compatible dimensions so that the indicated expressions make sense.  Then

a   A B C = AB C    (associative property of multiplication)

b  A B C  = A B  A C     (left distributive law)

c     A B  C = A C  B C    (right distributive law)

d     r AB = rA  B = A rB      for any scalar r.

e)   If Am n  then Im A = A  and A In = A .

Warning:  AB BA in general.  In fact, the sizes won't even match up if you don't use square matrices.



The transpose operation:

Definition:  Let Bm n = bi j  .  Then the transpose of B,  denoted by BT is an n m matrix defined by

entryi j BT entryj i B = bj i .

The effect of this definition is to turn the columns of B into the rows of BT :
entryi colj B = bi j .

entryi rowj BT = entryj i BT = bi j .

And to turn the rows of B into the columns of BT:
entryj rowi B = bi j 

entryj coli BT = entryj i BT = bi j .

Exercise 2)  explore these properties with the identity

1 2 3

4 5 6

T

=

1 4

2 5

3 6
 .

Algebra of transpose:

a    AT T 
= A  

b     A B T = AT  BT  

c    for every scalar r   rA T = r AT  

d  (The only surprising property, so we should check it.)  A B T = BT AT 



2.2 matrix inverses.

We've been talking about matrix algebra: addition, scalar multiplication, multiplication, and how these 
operations combine.  But I haven't told you what the algebra on the previous page is good for.  Today we'll
start to find out.  By way of comparison, think of a scalar linear equation with known numbers a, b, c, d 
and an unknown number x, 

a x b = c x d
We know how to solve it by collecting terms and doing scalar algebra:

a x c x = d b 
a c  x = d b       *

x =
d b
a c

 .

How would you solve such an equation if A, B, C, D were square matrices, and X was a vector (or matrix)
?  Well, you could use the matrix algebra properties we've been discussing to get to the ∗ step.  And then if
X was a vector you could solve the system * with Gaussian elimination.  In fact, if X was a matrix, you 
could solve for each column of X (and do it all at once) with Gaussian elimination.  

But you couldn't proceed as with scalars and do the final step after the * because it is not possible to divide
by a matrix. Today we'll talk about a potential shortcut for that last step that is an analog of of dividing, in 
order to solve for X .  It involves the concept of inverse matrices.



Matrix inverses:  A square matrix An n is invertible if there is a matrix Bn n so that
AB = BA = I .

In this case we call B the inverse of A, and write B = A 1 .

Remark 1:   A matrix A can have at most one inverse, because if we have two candidates B, C with
AB = BA = I    and also    AC = CA = I 

then
BA C = IC = C  

B AC = BI = B 
so since the associative property BA C = B AC  is true, it must be that

B = C.  

Remark 2:   In terms of linear transformations, if T : n n is the linear transformation T x = A x,  then
saying that A has an inverse matrix is the same as saying that T has an inverse linear transformation, 
T 1 : n n  with matrix B so that T 1 T x = x   x n  and  T T 1 y = y  y n.   Your 
final food for thought question from last Friday explains why linear transformations T : n m only 
have a chance at having inverse transforms when n = m.

Exercise 1a)  Verify that for A =
1 2

3 4
 the inverse matrix is A 1 =

2 1

3
2

1
2

 .



Inverse matrices can be useful in solving algebra problems.  For example

Theorem:  If A 1 exists then the only solution to Ax = b is x = A 1b .

Exercise 1b)  Use the theorem and A 1 in 2a, to write down the solution to the system
x 2 y = 5  

3 x 4 y = 6      

Exercise 2a)   Use matrix algebra to verify why the Theorem above is true.  Notice that the correct formula 
is x = A 1b  and not x = b A 1 .  (This second product can't even be computed because the dimensions 
don't match up!)  



Corollary:  If A 1 exists, then the reduced row echelon form of A is the identity matrix.
proof:  For a square matrix, solutions to A x = b  always exist and are unique only when A reduces to the 
identity.  When A 1 exists,  the solutions to A x = b exist and are unique, so rref A  must equal the 
identity.

Exercise 3   Assuming A is a square matrix with an inverse A 1, and that the matrices in the equation 
below have dimensions which make for meaningful equation, solve for X in terms of the other matrices:

XA C = B



But where did that formula for A 1 come from?

One Answer:  Consider A 1 as an unknown matrix, A 1 = X .  We want
A X = I .

We can break this matrix equation down by the columns of X. In the two by two case we get:

A col1 X col2 X =
1

0

0

1
 .

In other words, the two columns of the inverse matrix X should satisfy

A col1 X =
1

0
,   A col2 X =

0

1
  .

We can solve for both of these mystery columns at once, as we've done before when we had different right
hand sides:

Exercise 3:  Reduce the double augmented matrix
1 2

3 4

1

0

0

1
 

to find the two columns of A 1 for the previous example.



For 2 2 matrices there's also a cool formula for inverse matrices:

Theorem:  
a b

c d

1

 exists if and only if the determinant D = ad bc of  
a b

c d
 is non-zero.  And in 

this case,

 
a b

c d

1

=
1

ad bc
d b

c a
 

(Notice that the diagonal entries have been swapped, and minus signs have been placed in front of the off-
diagonal terms.  This formula should be memorized.)

Exercise 4)  Check that the magic formula reproduces the answer you got in Exercise 3 for 

1 2

3 4

1

  

Remark)  If ad bc = 0  then rows of A are multiples of each other, so A cannot reduce to the identity, so 
doesn't have an inverse matrix.



Exercise 4:  Will this always work?  Can you find A 1 for 

A :=

1 5 1

2 5 0

2 7 1
 ?



Exercise 5)  Will this always work?  Try to find B 1 for B :=

1 5 5

2 5 0

2 7 4
 .

Here's what happens when we try to find the three columns of B 1:

BaugI  

1 5 5 1 0 0

2 5 0 0 1 0

2 7 4 0 0 1
                   rref BaugI =

1 0 5 0
7
4

5
4

0 1 2 0
1
2

1
2

0 0 0 1
3
4

5
4



Tues Feb 6
       2.2-2.3  Matrix inverses

Announcements: 

Warm-up Exercise:



Theorem:  Let An n be a square matrix.  Then A has an inverse matrix if and only if its reduced row 

echelon form is the identity.  In this case the algorithm illustrated in our examples will yield A 1.

explanation:  By the theorem, we discussed on Monday, when A 1exists, the  linear systems
A x = b 

always have unique solutions (x = A 1b .  From our previous discussions about reduced row echelon 
form, we know that for square matrices, solutions to such linear systems exist and are unique if and only if
the reduced row echelon form of A is the identity matrix.   Thus by logic, whenever A 1exists, A reduces to
the identity.

In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation
A X = I 

i.e.

A col1 X col2 X .... coln X =

1

0

0

0

0

1

0

0

....

0

0

0

1

   

Because A reduces to the identity matrix, we may solve for X column by column as in the examples we've 
worked, by using a chain of elementary row operations:

 A  I I  B ,

and deduce that the columns of X are exactly the columns of B, i.e. X = B.  Thus we know that
A B = I .

To realize that B A = I as well, we would try to solve B Y = I for Y, and hope Y = A .  But we can actually 
verify this fact by reordering the columns of I  B  to read B  I  and then reversing each of the 
elementary row operations in the first computation, i.e. create the reversed chain of elementary row 
operations,

B  I I  A  .

so B A = I also holds.  (This is one of those rare times when matrix multiplication actually is commuative.) 

To summarize:  If A 1 exists, then solutions x to A x = b always exist and are unique, so the reduced row 
echelon form of A is the identity.  If the reduced row echelon form of A is the identity, then A 1 exists, 
because we can find it using the algorithm above.  That's exactly what the Theorem claims.



Saying the same thing in lots of different ways  (important because it ties a lot of our Chapter 1-2 ideas 
together):  Can you explain why these are all equivalent?

The invertible matrix theorem  (page 114)

Let A be a square n n matrix.  Then the following statements are equivalent.  That is, for a given A, the 
statements are either all true or all false.

a)  A is an invertible matrix.

b)  The reduced row echelon form of A is the n n identity matrix.

c)  A has n pivot positions

d)  The equation A x = 0 has only the trivial solution x = 0.

e)  The columns of A form a linearly independent set.

f)  The linear transformation T x A x is one-one.

g)  The equation A x = b has at least one solution for each b n.

h)  The columns of A span n .

i)  The linear transformation T x A x maps n onto n.

j)  There is an n n  matrix C  such that C A = I.

k)  There is an n n matrix D such that A D = I.

l)  AT  is an invertible matrix.



Wed Feb 7
       2.2-2.3  Matrix inverses:  the product of elementary matrices approach to matrix inverses

Announcements: 

Warm-up Exercise:



Exercise 1)  Show that if A, B, C are invertible matrices, then

A B 1 = B 1 A 1.
ABC 1 = C 1B 1A 1

Theorem  The product of n n invertible matrices is invertible, and the inverse of the product is the 
product of their inverses in reverse order.



Saying the same thing in lots of different ways  (important because it ties a lot of our Chapter 1-2 ideas 
together):  Can you explain why these are all equivalent?

The invertible matrix theorem  (page 114)

Let A be a square n n matrix.  Then the following statements are equivalent.  That is, for a given A, the 
statements are either all true or all false.

a)  A is an invertible matrix.

b)  The reduced row echelon form of A is the n n identity matrix.

c)  A has n pivot positions



d)  The equation A x = 0 has only the trivial solution x = 0.

e)  The columns of A form a linearly independent set.

f)  The linear transformation T x A x is one-one.



g)  The equation A x = b has at least one solution for each b n.

h)  The columns of A span n .

i)  The linear transformation T x A x maps n onto n.



j)  There is an n n  matrix C  such that C A = I.

k)  There is an n n matrix D such that A D = I.

l)  AT  is an invertible matrix.



Wed Feb 7
       2.2-2.3  Matrix inverses:  the product of elementary matrices approach to matrix inverses

Announcements: 

Warm-up Exercise:



Exercise 1)  Show that if A, B, C are invertible matrices, then

A B 1 = B 1 A 1.
ABC 1 = C 1B 1A 1

Theorem  The product of n n invertible matrices is invertible, and the inverse of the product is the 
product of their inverses in reverse order.



Our algorithm for finding the inverse of a matrix can be reformulated in terms of a product of so-called 
"elementary" matrices.  This product idea will pay off elsewhere.  To get started, let's notice an analog of 
the fact that a matrix times a vector is a linear combination of the matrix columns.  That was in fact how we
defined matrix times vector in week 2, although we usually use the dot product way of computing the 
product entry by entry, instead:

Definition (from 1.4)  If A is an m n matrix, with columns a1, a2,  ... an (in m) and if x n , then 
A x is defined to be the linear combination of the columns, with weights given by the corresponding entries
of x.  In other words,

A x = a1  a2   ... an  x x1 a1  x2 a2   ... xn an .

Theorem  If we multiply a row vector times an n m matrix B we get a linear combination of the rows of 
B:  proof:  We want to check whether

xT B = x1 x2 ... xn

b1

b1

:

bn

= x1 b1  x2 b2   ... xn bn .

where the rows of B are given by the row vectors b1, b2, ... bn.  This proposed identity is true if and only if
its transpose is a true identity.  But the transpose of the left side is

xT B T = BT x T
T

=  BT x     

=  b1
T  b2

T   ... bn
T  x  

x1 b1
T  x2 b2

T   ... xn bn
T

which is the transpose of the right side of the proposed identity.  So the identity is true.
Q.E.D.



Exercise 2a  Use the Theorem on the previous page and work row by row on so-called "elementary 
matrix" E1 on the right of the product below,  to show that E1 A is the result of replacing row3 A  with 
row3 A 2 row1 A , and leaving the other rows unchanged:

1 0 0

0 1 0

2 0 1

a11 a12 a13

a21 a22 a23

a31 a32 a33

  =                    

2b)  The inverse of E1 must undo the original elementary row operation, so must replace any row3 A  
with row3 A 2 row1 A .  So it must be true that

E1
1 =

1 0 0

0 1 0

2 0 1
.

Check!

2c)   What 3 3 matrix E2can we multiply times A, in order to multiply row2 A  by 5 and leave the other 

rows unchanged. What is  E2
1 ?

2d)  What 3 3 matrix E3 can we multiply time A, in order to swap row1 A  with row3 A ?   What is 

E3
1 ?



Definition  An elementary matrix E  is one that is obtained by doing a single elementary row operation on 
the identity matrix.  

Theorem  Let Em m be an elementary matrix.  Let  Am n.   Then the product E A is the result of doing the 
same elementary row operation to A that was used to construct E from the identity matrix.

Algorithm for finding A 1 re-interpreted:   Suppose a sequence of elementary row operations reduces the 
n n square matrix A to the identity In.  Let the corresponding elementary matrices, in order, be given by

E1, E2 , ...   Ep.
Then we have

Ep Ep 1 .... E2 E1 A ...  = In 
 

Ep Ep 1 .... E2 E1 A = In .

So, 

A 1 = Ep Ep 1 .... E2 E1.

Notice that 

Ep Ep 1 .... E2 E1 = Ep Ep 1 .... E2 E1 In  

so we have obtained A 1by starting with the identity matrix, and doing the same elementary row operations
to it that we did to A, in order to reduce A to the identity.  I find this explanation of our original algorithm to
be somewhat convoluted, but as I said, the matrix product decomposition idea is going to pay dividends 
elsewhere.

Also, notice that we have ended up "factoring" A into a product of elementary matrices:

A = A 1 1
 =  Ep Ep 1 .... E2 E1

1 = E1
1 E2

1 .... Ep 1
1  Ep

1  .


