Math 2270-004 Week 5 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes cover material in 2.1-2.3.
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Remember from last week that matrices correspond to linear transformations, and that products of matrices
are the matrices of compositions of linear transformations:



2.1 Matrix multiplication

Suppose we take a composition of linear transformations:
T (R)-R™ Ty (x)=4x (4, )
mXn

T, :Rm@ T,(x)=Br (B,,,)

Then the composition 7, o T, : R" —RP is linear:
W (e f)lete) = (1, (1, e+ ))

2(T1 (z)) T, linear

—

So T, o T, :R"—[Re is a matrix transformation, by the theorem on the previous page.

o Its fh column is

TeT ()= B8 (1()) -
] =1, (e (4)) o
=B (e (4))

1.e. the matrix of T2 c>T1 Rr—>RPis
[BQIBQQ Bgn] = B A.

where col. (A) =a, .
J -

‘ Summary: |For Bp <m and Am <1

the matrix product (B4 )p «, 18 defined by
col, (BA)=Bcol, (4) j=1.n U'Qi’\

or equivalently
entry, (BA) =row, (B) - colj (4) i=1.p,j=1.n —
And, J
(BA)x=B (A x) —
because BA is the matrix of 7, o T . 8
N
A
Lntry . (P)P‘
30y B

S ronre(B)- "'Qg; A



2.1 matrix algebra....we already talked about matrix multiplication. It interacts with matrix addition in
interesting ways. We can also add and scalar multiply matrices of the same size, just treating them as
oddly-shaped vectors:

Matrix algebra:

addition and scalar multiplication: Let4 ., B _  betwo matrices of the same dimensions (m rows
and n columns). Let entry, (A4) = a, » entry, (B) = bl.j . (In this case we write 4 = [al.j], B= [bl.j] J)
Let ¢ be a scalar. Then

entryl.j(A + B) = a; + bl.j .
entryl.j(cA) =ca.

In other words, addition and scalar multiplication are defined analogously as for vectors. In fact, for these
two operations you can just think of matrices as vectors written in a rectangular rather than row or column
format.

1 -2 0 27
Exercise 1) Let4:=| 3 -1 |andB:=| 5 -1 |. Compute44— B.
0 3 -1 1
( -2 o 27
4’A~% = 4 -t 715 -~
5
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| I
vector properties of matrix addition and scalar multiplication

But other properties you're used to do hold:

+ is commutative A+B=B+ 4
entryl.j(A +B) = a + bl.j = bl.j + a, = entryl.j(B +4)
+ + is associative (A+B)+C=4+ (B+C)

the ij entry of each side is a, + bl.j + ¢,

scalar multiplication distributes over + ¢(4 + B)=cA4 + cB.
ij entry of LHS is c(al.j + bl.j) = c(al.j + bl.j) = ij entry of RHS



More interesting are how matrix multiplication and addition interact:

Check some of the following. Let/ bethen x n identity matrix, with / x=x forallx € R". Let

A, B, C have compatible dimensions so that the indicated expressions make sense. Then

a AB lC') = (Ali )C%(aizciative property of multiplication) A\M, ,\< nxp CI’ 1/) (A'“’""E""‘Q Cﬁ‘\,
ok a d NS (Ag} C
s (ALBE) = A ot (BO) A LB s, L1

(A8 c,)w/

-
= A (B etiC) [AGA]

= (AB) e heconst
= el (AB)C&) 3 Wraﬁ\l\"ﬁ‘ ""‘L"\-‘\
b A(B+C)=AB+ AC (left Oistributive law)

l“’Lquo\aj che cle.
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(A+B)C=A4C + BC (rightdistributive law)

1-3.
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Warning: 4B # BA in general. In fact, the sizes won't even match up if you don't use square matrices.



The transpose operation:

Definition: LetB, = [bl.j] . Then the transpose of B, denoted by B is [@ n :< m natrix defined by
. T £ (<n
}imi: enlryl.j(B ) = enﬂfyjl.(B)Z‘lzLi. \ fJL‘S\M
The effect of tis definition is to turn the columns of B into the rows of B’ : o v S]) R = I’l.)'
entryl.(colj(B) )= bl.j } J L"'J'

entry.(row.(B") = entry. .(B") =b. .. ‘
i j ji

ij
And to turn Eﬁe rows of B)nto t \‘S"‘“ row 3 BT "

entrngrowl.(B)) = bi]% B} D;' oo L.r
entryj(coll.(B )) = entryjl.(B ) = bl.j . v Pja Jm™~
. . . . . - {_b’ . b}_' o Eh«-.]
Exercise 2) explore these properties with the identity A ) %) J
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2.2 matrix inverses.

We've been talking about matrix algebra: addition, scalar multiplication, multiplication, and how these
operations combine. But I haven't told you what the algebra on the previous page is good for. Today we'll
start to find out. By way of comparison, think of a scalar linear equation with known numbers a, b, ¢, d
and an unknown number Xx,

ax+b=cx+d
We know how to solve it by collecting terms and doing scalar algebra:

ax—cx=d—1>b

(a—c)x=d—0»b @
_d—b
a—c

How would you solve such an equation if 4, B, C, D were square matrices, and X was a vector (or matrix)
? Well, you could use the matrix algebra properties we've been discussing to get to the * step. And then if
X was a vector you could solve the system * with Gaussian elimination. In fact, if X was a matrix, you
could solve for each column of X (and do it all at once) with Gaussian elimination.

X

But you couldn't proceed as with scalars and do the final step after the * because it is not possible to divide
by a matrix. Today we'll talk about a potential shortcut for that last step that is an analog of of dividing, in
order to solve for X'. It involves the concept of inverse matrices.

AX+B =CX + D
(AX+R) -cx = (X 4 D) ~CX

[Qxx—cx) +/K}/%:[(C‘%x)+ ﬁ -6
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Matrix inverses: A square matrix 4 is invertible if there is a matrix B, = so that
AB=BA=1.
In this case we call B the inverse of 4, and write B = Al

Remark 1: A matrix 4 can have at most one inverse, because if we have two candidates B, C with
AB=BA=1 andalso AC=CA=1

then
(BA)C=IC=C
B(AC)=BI=B
so since the associative property (B4)C = B(AC) is true, it must be that
B=C.

Remark 2: In terms of linear transformations, if 7' : [” —[R” is the linear transformation 7'(x) = 4 x, then
saying that 4 has an inverse matrix is the same as saying that 7" has an inverse linear transformation,

7™ : Rt —>R" with matrix B so that 7' o T(x)=x Vx€ R and To T:l(y) =y Vye R Your
final food for thought question from last Friday explains why linear transformations 7 : R* — R only
have a chance at having inverse transforms when n = m.

-2 1
1 2

Exercise 1a) Verify that for 4 = the inverse matrix is 4~ =

.=R

> 1
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Inverse matrices can be useful in solving algebra problems. For example

Theorem: If A~ exists then the only solutionto Ax=bisx=4 ! b.

Exercise 1b) Use the theorem and A 'in 2a, to write down the solution to the system
x+2y=5 -4+4 =9 v/
3x+4y=6 rrlg = b /.
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Exercise 2a) Use matrix algebra to verify why the Theorem above is true. Notice that the correct formula
isx=A4 ! b andnotx=5» A" (This second product can't even be computed because the dimensions
=)

don't match up!) ‘f A7 -=b Jeo e an
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Corollary: If A" exists, then the reduced row echelon form of 4 is the identity matrix.
proof: For a square matrix, solutions to 4 x = b always exist and are unique only when A reduces to the

identity. When A exists, the solutions to 4 x = b exist and are unique, so rref (4 ) must equal the

identity. o
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Exercise 3 Assuming 4 is a square matrix with an inverse 4 : , and that the matrices in the equation
below have dimensions which make for meaningful equation, solve for X in terms of the other matrices:
XA+ C=B

S XA=8-C
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But where did that formula for A7 come from?

One Answer: Consider 4™ as an unknown matrix, A= X. We want
AX=1.
We can break this matrix equation down by the columns of X. In the two by two case we get:

X..: [)(" :l‘ 7(

Xa 2 7r

1|0

01
In other words, the two columns of the inverse matrix X should satisfy

A K'l - A(coll(X))Z[(l)

4 |col, (X)|col, (X)

0

, A (colz(X) ) =

=A [Yi

" 1
We can solve for both of these mystery columns at once, as we've done before when v:l/g ad different right
hand sides: bo Fond “‘(l " A -
Exercise 3: Reduce the double augmented matrix \I/ 7 b bd “{7- .
1 2110
34(0]|1

to find the two columns of 4" for the previous example.

I o [—\I
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( XP\:‘I as well, 4o
A=A



For 2 x 2 matrices there's also a cool formula for inverse matrices:

-1
a b a b
Theorem: J \ exists if and only if the determinant D = ad — bc of is non-zero. And in
c c
this case,
-1
a b 1 d -b
cd| ad—bc| -c a

(Notice that the diagonal entries have been swapped, and minus signs have been placed in front of the off-
diagonal terms. This formula should be memorized.)

Exercise 4) Check that the magic formula reproduces the answer you got in Exercise 3 for

127!
. (@
‘J\zc{c@ @

34

Remark) If ad — bc =0 then rows of A4 are multiples of each other, so 4 cannot reduce to the identity, so
doesn't have an inverse matrix.



Exercise 4: Will this always work? Can you find A for
1 51

A=1250[?
2 71

20,48, 4p, O E§-2|-2 \
—2R + Ry Ry 0 %-1{20
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155|100
250(010
2741001

Baugl =

155
Exercise 5) Will this always work? Try to find B~ forB:=| 2 5 0

27 4
Here's what happens when we try to find the three columns of B -
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Theorem: Letd4 beasquare matrix. Then A has an inverse matrix if and only if its reduced row

X

echelon form is the identity. In this case the algorithm illustrated in our examples will yield 4 L

explanation: By the theorem, we discussed on Monday, when A_lexists, the linear systems

Ax=b
always have unique solutions (x =4 'p ). From our previous discussions about reduced row echelon
form, we know that for square matrices, solutions to such linear systems exist and are unique if and only if

the reduced row echelon form of 4 is the identity matrix. Thus by logic, whenever A4 ! exists, 4 reduces to
the identity.

In this case that 4 does reduce to /, we search for A" as the solution matrix X to the matrix equation
AX=1
1.e.

0
1
4| col (X) | coly(X) | ... |col (X) |=
0
0

- o o O

S O o =

Because 4 reduces to the identity matrix, we may solve for X column by column as in the examples we've
worked, by using a chain of elementary row operations:

[A]1]=—=—>—>—=[]]|B],

and deduce that the columns of X are exactly the columns of B, i.e. X= B. Thus we know that
AB=1.

To realize that B A = I as well, we would try to solve B Y = [ for Y, and hope Y = 4 . But we can actually
verify this fact by reordering the columns of [/ | B] to read [ B | /] and then reversing each of the
elementary row operations in the first computation, i.e. create the reversed chain of elementary row
operations,

(Bl ]>—>——>—[I][4].

so B A= 1also holds. (This is one of those rare times when matrix multiplication actually is commuative.)

To summarize: If 47! exists, then solutions x to 4 x = b always exist and are unique, so the reduced row

echelon form of 4 is the identity. If the reduced row echelon form of 4 is the identity, then A7 exists,
because we can find it using the algorithm above. That's exactly what the Theorem claims.



Saying the same thing in lots of different ways (important because it ties a lot of our Chapter 1-2 ideas
together): Can you explain why these are all equivalent?

The invertible matrix theorem (page 114) g "‘Cail e Qur g\) 2 Wu& *HMD\}

Let 4 be a square n x n matrix. Then the following statements are equivalent. That is, for a given A4, the
statements are either all true or all false.

a) A is an invertible matrix.
dva Hu's
b) The reduced row echelon form of 4 is the n X n identity matrix.
U
c) A has n pivot positions
d) The equation 4 x = 0 has only the trivial solution x = 0.
e) The columns of 4 form a linearly independent set.
f) The linear transformation 7'(x) := A4 x is one-one.
g) The equation 4 x = b has at least one solution for each b € R".
h) The columns of 4 span R” .
i) The linear transformation 7'(x) := 4 x maps R” onto R".

j) Thereis an n x n matrix C such that C 4 =1.

k) Thereis an n X n matrix D such that 4 D = I.

1) A" is an invertible matrix.
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« 2.2-2.3 Matrix inverses: the product of elementary matrices approach to matrix inverses
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Exercise 1) Show that if 4, B, C are invertible matrices, then
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Theorem The product of n x n invertible matrices is invertible, and the inverse of the product is the
product of their inverses in reverse order.



Saying the same thing in lots of different ways (important because it ties a lot of our Chapter 1-2 ideas
together): Can you explain why these are all equivalent?

The invertible matrix theorem (page 114)

Let A be a square n x n matrix. Then the following statements are equivalent. That is, for a given A4, the
statements are either all true or all false.

a) A is an invertible matrix.
b) The reduced row echelon form of 4 is the n X n identity matrix.

¢) A has n pivot positions
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d) The equation 4 x = 0 has only the trivial solution x = 0.
e) The columns of 4 form a linearly independent set.

f) The linear transformation 7'(x) := A4 x is one-one.

A= e.
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L
(2) A [%; =0
<'\A
. - 2
f d s e €= O, S0 (=4 :“':C”\:O
e =4 X«S’} ad prewons Famﬂwpln backudy - 1§ e Stne

Han, (1) 5 +me’,h
-;—75_ T(R) ove -one wlans the Pw'ol.a«ﬁ So e ml'& ":‘{c g ()
% T(ﬂ*[a Q(wzu?(; I/\AQ w/vw\b\L Srew‘\nag
4. (§ /\x T « =29
LA
4 sl b to A A\1 =5 L
A#’E‘ AK—/'\\1 -‘:9 ‘ S o2
0w /D\(;(’_tn-.:o |€(A) 1§ ‘]‘VM) _)li:j 20
_H\DVH‘-QU'IAB X2y
S0 |inbhom do Ax=
IS 32“0 \,

uov\wzc* O\Iﬂ, Aeg(
a=d: | § AV ek Hy sdinbian 1o A

)]

1]

XL AL

~
O _
N'6=0

d Db ¢ ho fre Pw»«alw = el (N=T



g) The equation 4 x = b has at least one solution for each b € R".
h) The columns of 4 span R” .

i) The linear transformation 7'(x) := A4 x maps R” onto R”.
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j) Thereis ann X n matrix C such that C 4 = 1.

k) There is an n x n matrix D such that 4 D = I.

1) 47 is an invertible matrix.
w) =9 37“ L f% A axisks | How (et C:A:‘l 1[,,13)
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a =L | recall Hat (AB) =BTAT
So, ,',5. A has an st AP‘ s e w\a:l' nax

R for whid -
ArR=1 & ®BA-l

Thshw apd=1" 3 @aT=T"
A= L, aR=T

~1 _'r
\'3-_—.—) a) So @’T hag an (Mgt )ymbz(gﬂ'\ .:Cﬂ )
L cA=1 L |
Hiw Ha ml?] Salw‘«'m 3_<' ‘(‘0 A#(:O 19 X=0, "
A% =T
= ¢Ax%x=C0 =0,
= T#=0 =) x=0
So, j'—‘% d =Da
l<’=)a)

So -\aLa_ -Qol'\'w A?’( S-C L\ag a So[wl-‘o‘k 'i:DL

= a) ¢ TV gxish 'H«wo\m;l a =4 albae
L=a): 1§ AT QSS’%WV»?AJW,\/\T%W

Heat (F\T)T A \as an invenst
i



Wed Feb 7
« 2.2-2.3 Matrix inverses: the product of elementary matrices approach to matrix inverses
Celoged bk, clogd mle
Announcements: ¢ M £ Xan, \jd\/\ /Ll 4 b koo {54((.2 i,(*(;m‘[\b\.\j

¢ Ql«j I’\"‘r GI'S
° '('bo\ab U mashe The 'I‘D rewovw SMJva,[.O\,\J

rml\‘uz £ Xan~ (MJ\‘W SLU.‘(-')_) Pos,l-(ak lo\.‘b\. "{'vola_uj

v bvorren Pr\ CANVAS | 30 ot~ fn ewews $Lsn, JULOR 239

. 12:6S-215
Warm-up Exercise: T)L-C'\\M-LMS . _Q,%' -I'\'l 2:%7
0\.) g \\7‘ ,:/J.L 5 - \_/:A ave llv&o«n‘lj W\c(ﬂ.{v—wcﬁ%’l" WLang

— — - - =y =
T AU _r oY, m 0 = TaToTAE

3 Spa VY, N VvV } —_ XV &KV b & XNV )SU\(_J/\. Hoe aed~
b \) V\SL LY { VT e W ;Léé-]R
3=l,'7.,_- h}

4') _T : \RV\—’:) [R‘M l\‘v\o_m/ +v—uh5-Fnrwp\ Ln\,

T(E+7) = T (@) +TE) v %,ie R
TCen)= cT@) vV 2elR", ce R
;{ o ot Shaowed Haat madnex v T = AT

o vt Shovtd daat Heg ligar
trargoviadions one uatrnx frac,

N

Ay = AT A
A(c';() =< AR



4 W“M* ’F"/T
(s jim \wa/

Exercise 1) Show that if 4, B, C are invertible matrices, then
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Theorem The product of n x n invertible matrices is invertible, and the inverse of the product is the
product of their inverses in reverse order.



Our algorithm for finding the inverse of a matrix can be reformulated in terms of a product of so-called
"elementary" matrices. This product idea will pay off elsewhere. To get started, let's notice an analog of
the fact that a matrix times a vector is a linear combination of the matrix columns. That was in fact how we
defined matrix times vector in week 2, although we usually use the dot product way of computing the
product entry by entry, instead:

Definition (from 1.4) If 4 is an m x n matrix, with columns @, @), ... g, (in R”) and if x € R”, then

A x 1s defined to be the linear combination of the columns, with weights given by the corresponding entries
of x. In other words,

Theorem If we multiply a row vector times an n X m matrix B we get a linear combination of the rows of
B: proof: We want to check whether

b,
T b,
X B=|X% X% X, =xlgl+x2Q2+ xnhn
b
where the rows of B are given by the row vectors b 1 bz, ...b . This proposed identity is true if and only if

its transpose is a true identity. But the transpose of the left side is
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which is the transpose of the right side of the proposed identity. So the identity is true.

X

Q.ED.



Exercise 2a Use the Theorem on the previous page and work row by row on so-called "elementary
matrix" E, on the right of the product below, to show that £ 4 is the result of replacing row, (4) with

row,(4) — 2 row, (4), and leaving the other rows unchanged:

1 00| %41 %2 %s
0 1 0| @ 4y 4 | =

201 ||a. a. a

2b) The inverse of E| must undo the original elementary row operation, so must replace any row, (4)
with row, (4) + 2 row, (4). So it must be true that

100
E'=[010
2 01
Check!

2¢) What 3 x 3 matrix £,can we multiply times 4, in order to multiply row, (4) by 5 and leave the other

rows unchanged. What is EZ_1 ?

2d) What 3 x 3 matrix E; can we multiply time 4, in order to swap row, (4) with row, (4)? What is

-1
{7
E;

1 3



Definition An elementary matrix E is one that is obtained by doing a single elementary row operation on
the identity matrix.
Theorem LetE

. be an elementary matrix. Let 4 Then the product E A4 is the result of doing the

X X n'

same elementary row operation to A that was used to construct £ from the identity matrix.

Algorithm for finding A7 re-interpreted: Suppose a sequence of elementary row operations reduces the
n X n square matrix 4 to the identity / . Let the corresponding elementary matrices, in order, be given by

ELE,,.. E
P
Then we have
E(E, | Ey(E (4)).)=1,

So,
-1 _
A —EpEp_ | ....EzE1
Notice that
E E . ""EzEl =EpEp_1 EzEl In

so we have obtained 4 1by starting with the identity matrix, and doing the same elementary row operations
to it that we did to 4, in order to reduce 4 to the identity. I find this explanation of our original algorithm to
be somewhat convoluted, but as I said, the matrix product decomposition idea is going to pay dividends
elsewhere.

Also, notice that we have ended up "factoring" 4 into a product of elementary matrices:

A=(4"") = (E,E E,E\)

E,_ . E, E' E

1 2 B, B



