
Math 2270-004  Week 2 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  1.3-1.5. They include material from last weeks notes that we 
did not get to.

Tues Jan 16
       1.3  algebra and geometry for vector equations and linear combinations

Announcements: 

Warm-up Exercise:



On Friday we defined vectors algebraically, as ordered lists of numbers.  And, we defined vector addition 
and scalar multiplication:
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There are a number of straightforward algebra properties for vector addition and scalar multiplication:

Let u, v, w n,    c, d .  Then

(i)       u v = v u

(ii)     u v w = u v w

(iii)    u 0 = 0 u = u    ( 0 is defined to be the vector for which each entry is the number 0.)

(iv)    u u = u u = 0  ( u is defined to be 1 u, i.e. the vector for which each entry is the 
opposite of the corresponding entry in u.) 

(v)    c u v = c u c v 

(vi)  c d u = c u d u

(vii)  c d u = c d  u

(viii)  1 u = u  .



Geometric interpretation of vectors     

The space n may be thought of in two equivalent ways.  In both cases, n consists of all possible 
n tuples of numbers:

(i)  We can think of those n tuples as representing points, as we're used to doing for n = 1, 2, 3.  In this 
case we can write

n = x1, x2,..., xn , s.t. x1, x2,..., xn .

(ii) We can think of those n tuples as representing vectors that we can add and scalar multiply.  In this 
case we can write
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Since algebraic vectors (as above) can be used to measure geometric displacement, one can identify the two
models of n as sets by identifying each point x1, x2,...xn  in the first model with the displacement vector

x = x1, x2,...xm
T from the origin to that point, in the second model, i.e. the "position vector" of the point.  



Exercise 1)  Let  u =
1
1  and v =

1
3  . 

1a)  Plot the points 1, 1  and 1, 3 , which have position vectors u, v.    Draw these position vectors as 
arrows beginning at the origin and ending at the corresponding points.  

1b)  Compute  u v and then plot the point for which this is the position vector.   Note that the algebraic 
operation of vector addition corresponds to the geometric process of composing horizontal and vertical 
displacements.

1c)   Compute 3 u and 2 v  and plot the corresponding points for which these are the position vectors.



One of the key themes of this course is the idea of "linear combinations".  These have an algebraic 
definition, as well as a geometric interpretation as combinations of displacements.

Definition:  If we have a collection of n vectors v1, v2,  ... vp  in n, then any vector v n that can be 
expressed as a sum of scalar multiples of these vectors is called a linear combination of them.  In other 
words, if we can write

v = c1v1 c2v2  ... cpvp ,

then v is a linear combination of v1, v2,  ... vp .  The scalars c1, c2,..., cp are called the linear combination 
coefficients or weights.

Example  You've probably seen linear combinations in previous math/physics classes, even if you didn't 
realize it. For example you might have expressed the position vector r as a linear combination

r = x i y j z k 
where i, j, k  represent the unit displacements in the x, y, z directions.  Since we can express these 
displacements using Math 2270 notation as
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Exercise 2)  Can you get to the point 2, 8 2 , from the origin 0, 0  , by moving only in the (±) 

directions of u =
1

1
 and v =

1

3
 ?  Algebraically, this means we want to solve the linear combination

problem
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 .

2a)  Superimpose a grid related to the displacement vectors u, v onto the graph paper below, and, recalling 
that vector addition yields net displacement, and scalar multiplication yields scaled displacement, try to 
approximately solve the linear combination problem above, geometrically.

2b)  Rewrite the linear combination problem as a linear system and solve it exactly, algebraically!!



2c)  Can you get to any point x, y  in 2, starting at 0, 0  and moving only in directions parallel to u, v ?

 Argue geometrically and algebraically.  How many ways are there to express 
x

y
 as a linear combination

of u and v ?

Definition  The span of a collection of vectors, written as span v1, v2, ...  vn  , is the collection of all linear
combinations of those vectors.

Examples:  We showed in 2c that span u, v = 2.   On the other hand, span u  is the line with implicit 
equation y = x.

Remark:  The mathematical meaning of the word span is related to the English meaning - as in "wing 
span" or "span of a bridge", but it's also different.  The span of a collection of vectors goes on and on and 
does not "stop" at the vector or associated endpoint:



What we may have realized in the previous exercise is the very important:

Fundamental Fact  A vector equation (linear combination problem)
x1 a1 x2 a2  ... xn an = b

is actually a system of linear equations for the unknown weights x1, x2, .... xn;  in fact the system of linear 
equations has augmented matrix given by

a1   a2  ...  an  b 
(where we have expressed the augmented matrix in terms of its columns).  In particular, b can be generated
by a linear combination of a1   a2  ...  an  if and only if there exists a solution to the linear system 
corresponding to the augmented matrix above.

This fundamental fact is so important to the course, that we should check it in general at some point.

Exercise 3a)  Does the vector equation 

x1
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2
x1

1

2

0
=

2

3

1
have any solutions?

3b)  What geometric question is this related to?  What geometric object is span

1

0

2
,

1

2

0
  ?



3c)  Use an augmented matrix calculation to find what condition needs to hold on vectors b  so that 

b  span

1

0

2
,

1

2

0
.   (!!)

In case we want to sketch anything related to Exercise 3:



Wed Jan 17
       1.4  the matrix equation A x = b.

Announcements: 

Warm-up Exercise:



Recall

Fundamental Fact   A vector equation (linear combination problem)
x1 a1 x2 a2  ... xn an = b

is actually a system of linear equations for the unknown weights x1, x2, .... xn;  in fact the system of linear 
equations has augmented matrix given by

a1   a2  ...  an  b 
(where we have expressed the augmented matrix in terms of its columns).  In particular, b can be generated
by a linear combination of a1   a2  ...  an  if and only if there exists a solution to the linear system 
corresponding to the augmented matrix above.
We should check this carefully today, assuming we didn't do so on Tuesday:

Definition (from 1.4)  If A is an m n matrix, with columns a1, a2,  ... an (in m) and if x n , then 
A x is defined to be the linear combination of the columns, with weights given by the corresponding entries
of x.  In other words,

A x x1 a1  x2 a2   ... xn an .
(This will give us a way to abbreviate vector equations.)



Definition.  Let u, v be vectors in n.   Then the dot product u v  is defined by 

u v = 
j = 1

n

uj vj = u1 v1  u2 v2  ... un vn .

Computational Theorem:  (This is usually a quicker way to compute A x.   Let  If A be an m n matrix,  
with rows R1, R2, ... Rm .  Then A x may also be computed using the rows of A and the dot product:

x1 a1  x2 a2   ... xn an = A x = 

R1  x

R2  x

:
Rm  x

 

Exercise 1a)   Compute both ways:
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Exercise 1b)  Write as a matrix times a vector:
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Summary Theorem:  (Three applications in one)  If A  is an m n matrix, with columns  a1, a2,  ... an (in 
m)  and if b m, then the matrix equation

A x = b 
has the same solution set as the vector equation

x1 a1  x2 a2   ... xn an = b

which, in turn, has the same solution set as the system of linear equations whose augmented matrix is 

a1   a2  ...  an  b .



Fri Jan 19
       1.5  solution sets to matrix equations; homogeneous and non-homogeneous systems of equations.

Announcements: 

Warm-up Exercise:



Definition:  A system of linear equations is homogeneous if it can be written in the form 
A x = 0

where A is an m n matrix, and 0 is the zero vector in m .

Definition:  A system of linear equations is nonhomogeneous if it can be written in the form 
A x = b

where A is an m n matrix, and b is non-zero, i.e. not the zero vector in m .

Our goal in section 1.5 is to understand the relationship between the solution sets of homogeneous and 
nonhomogeneous sytems, when the matrix A is the same.  

To understand how the different solution sets are related, we will check and use these algebra facts:

A x y = A x  A y 

A c x = c A x .



Homogeneous systems:  Notice that for any matrix A, it's always true that the homogeneous equation 
A x = 0 has a solution x = 0, so homogeneous systems are always consistent.  The question is whether 
there are more solutions.  (And, we call the solution x = 0 the "trivial" solution.)

Exercise 1)   Find and compare the solution sets of the following two linear systems.  The first one is 
homogeneous and the second one is non-homogeneous.  How do the solutions sets appear to be related?

3 x1 5 x2 4 x3 = 0                     3 x1 5 x2 4 x3 = 7 
3 x1 2 x2 4 x3 = 0                     3 x1 2 x2 4 x3 = 1
6 x1  x2 8 x3 = 0                     6 x1  x2 8 x3 = 4 



What happened in Exercise 1 is what always happens when the non-homogeneous system is consistent.  It
says that for consistent nonhomogeneous systems, all solution sets are "translations" of each other.

Theorem  (Fundamental Theorem of matrix equations)  Suppose the equation A x = b is consistent for 
some b.  Let p be a solution.  Then the solution set of A x = b is the set of all vectors

w = p vh
where vh is any solution of the homogeneous equation 

A x = 0.  

We can verify why this theorem is true!



Room for more examples...


