
Math 2270-004  Week 14 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  6.8, 7.1-7.2, with some supplementary material.  The Friday 
notes are not yet included.

Mon Apr 16
       6.8   Truncated Fourier series as projection of functions via an orthonormal basis of sinusoidal 
functions;  Fourier series in two variables and the idea behind jpg image compression, show and tell.

Announcements: 

Warm-up Exercise:

 





Example  for the inner product on C ,  given by

f, g
1

f t  dt  

The infinite set of functions
1

2
, cos t , sin t , cos 2 t , sin 2 t , ... , sin nt , cos nt , .....  

is already orthonormal!  Thus begins the subject of Fourier Series.  (See Wikipedia.)

To show the ortho-normality properties one applies the following trig identities, which follow from the 
addition angle formulas

cos m t  cos n t  = 
1
2

cos m n t cos m n  t  

cos2 n t = 
1
2

cos 2 n t 1

sin m t  sin n t  = 
1
2

cos m n  t   cos m n t

sin2 n t  = 
1
2

cos 2 n t 1

cos m t  sin n t = 
1
2

sin m n t sin m n t  

Exercise  verify how ortho-normality follows from these identities.



Let Vn span
1

2
, cos t , sin t , cos 2 t , sin 2 t , .... cos n t , sin n t  be the 2 n 1 

dimensional subspace spanned by the first 2 n 1 of these functions.  A deep theorem says that if 
f C ,   (actually, f only needs to be piecewise continous), then 

limn f projV
n
f  = 0.

Because we have an orthonormal basis for Vn the projection formula is easy to write down:

projV
n
 f = f ,

1

2

1

2
f, cos t cos t   f, sin t  sin t   ....  f, cos n t cos n t

f, sin n t  sin n t
.

We write

a0 = f, 1 =
1

f t  dt

ak = f, cos k t  = 
1

f t cos k t  dt

bk = f, sin k t  = 
1

f t  sin k t  dt.

Then

projV
n
 f = 

a0

2
 
k = 1

n

ak cos k t   
k = 1

n

bk sin k t .

The infinite series converges to f t  pointwise at places where f is differentiable, and to the average of 
right and left hand limits at jump discontinuities, so we also often consider the infinite Fourier series

f t  ~  
a0

2
 
k = 1

ak cos k t   
k = 1

bk sin k t .



f t  ~  
a0

2
 
k = 1

ak cos k t   
k = 1

bk sin k t .

a0 = f, 1 =
1

f t  dt       ak = f, cos k t  = 
1

f t cos k t  dt          

bk = f, sin k t  = 
1

f t  sin k t  dt.  

Exercise:  Define f t  = t, on the interval t .   Show

t  ~  2 
k = 1

1 n 1

n
sin n t





> > 

> > 

projV
10
f t :

with plots :
 plot1 plot t 2  2  Heaviside t 2 Heaviside t , t = 2 ..2 , color

= black :

 plot2 plot 2
n = 1

10

1 n 1 sin n t
n

, t = 2 ..2 , color = red :

 display plot1, plot2 , title = 'Fourier Series !' ;

t

2 3 
2 2 2

3 
2

2 

3
2
1

1
2
3

Fourier Series!

plot3 plot 2
n = 1

30

1 n 1 sin n t
n

, t = 2 ..2 , color = red : 

display plot1, plot3 , title = 'higher order approximation ' ;

t

2 3 
2 2 2

3 
2

2 

3
2
1

1
2
3

higher order approximation



As part of the deep theorem about Fourier series, as long as f is piecewise continuous,

proj V
N
 f  f    0    and proj V

N
 f   f  .

Recall, the norm that we get from the Fourier series inner product is

g 2 = 
1

g t 2 dt.

Now,

projV
n
 f = 

a0

2
 
k = 1

n

ak cos k t   
k = 1

n

bk sin k t

So

projV
n
 f 2 = 

a0

2
 
k = 1

n

ak cos k t   
k = 1

n

bk sin k t

2

 

=  
a0

2
 
k = 1

n

ak cos k t   
k = 1

n

bk sin k t , 
a0

2
 
k = 1

n

ak cos k t   
k = 1

n

bk sin k t

=
a0

2
,
a0

2
 

k = 1

n

ak
2   

k = 1

n

bk
2  = 

a0
2

2 k = 1

n

ak
2   

k = 1

n

bk
2,

because the cross terms in the expanded inner product cancel out -  since the basis vectors we've chosen 
for Vn are orthonormal:

Vn span
1

2
, cos t , sin t , cos 2 t , sin 2 t , .... cos n t , sin n t



> > 

(1)(1)

As an application, for our function f t = t,

f 2 =
1

t2 dt = 
2

0

t2 dt = 
2
3

2
.

Since

t ~  t  ~  2 
k = 1

1 n 1

n
sin n t  

It must be that
2
3

2
 = 4 

k = 1

1
n2

k = 1

1
n2  = 

2

6
.

This magic formula is true (which is sort of amazing), although you may not have seen it before:

k = 1

1
k2

;

1
6

 
2



Math 3150 2D Fourier Series Field Trip Project
Due date: Monday, Nov. 28 after Thanksgiving holiday.

Two-dimensional Fourier series can be used to perform image processing and data compression, and is a

salient example of how an set of orthogonal basis functions can be used to approximate functions. Suppose

f(x, y) is defined on the region (x, y) 2 [0, L]⇥ [0, H] and represents a grey scale image. For each point (x, y)

the greyscale value ranges from zero (black) to unity (white) f 2 [0, 1]. The orthogonal basis set we use is a

2D sine series:

�n,m(x, y) = sin

⇣
n⇡

L
x

⌘
sin

⇣
m⇡

H
y

⌘
,

where n and m both range from 1, 2, 3, . . .. The values
n⇡

L
and

m⇡

H
represent the horizontal and vertical

spatial frequencies. The approximate image is the double sum orthogonal projection:

f̂N,M (x, y) =

NX

n=1

MX

m=1

Bn,m�n,m(x, y),

where N and M represent the sum truncation and the values
N⇡

L
and

M⇡

H
represent the maximum horizontal

and vertical spatial frequencies available to represent the image—any image feature that has higher spatial

frequency, such as sharp areas of contrast, fine texture, etc, cannot be represented. The Fourier coe�cients

are

Bn,m =
hf,�n,mi

h�n,m,�n,mi , hg, hi =
Z

L

0

Z
H

0
g(x, y)h(x, y)dydx.

The goal of the project is to assess the qualitative nature of Fourier image processing in two experiments.

Experiment 1:

The first experiment you will show a subject (a friend that has not seen the full image) a Fourier-

decomposed image of a car/truck that you take with your cell phone camera. I advise to use a ”square”

Instagram-ready image, and compress it to 256X256 pixels, which is most easily accomplished by re-sending

the picture to yourself by email and compressing it to the ”small” size for sending. The automobile image

should be centered in the fame, and fill approximately 1/2-3/4 the width of the frame. It should be a random

car parked on a street, or something, that’s from a common brand and model that’s recognizable to most

people, or at least your friend. Your friend should not know anything about the picture at all and don’t tell

them anything. Show your friend successively higher truncated Fourier compressed images of the car until

your friend correctly guesses (1) that its a automobile of some type, and then (2) guesses the make and/or

model type. Start by showing your friend the Fourier compressed image at N = M = 10, then ascend

N = 20, 30, 40, 50, . . . until he/she gets both (1) and then (2). At each stage, record you friend’s response

and report your results, including the images and the compressed images.

Experiment 2:

Take two pictures, both 256X256 as described above. One of the images should be a ”natural scene,”

which should be interpreted broadly as naturescapes, or varied urban cityscapes—the point is that it should

contain a mix lots of things in the image, both foreground and background, objects with lots of di↵erent sizes

in the frame—and the other should be a somewhat boring picture of a single human-made material—e.g.,

a wall of bricks, patterned fabric, things of a regular or repeated nature to it; be sure that you fit several

repetitions of the pattern in your picture.. Get inventive with what you choose. We will compare the two

pictures’ Fourier coe�cients Bn,m. Natural images have been commonly reported to have squared Fourier

coe�cients that decay with a power law:

B
2
n,m

⇠ 1

n�
or ⇠ 1

m�
,



where � is typically in the range between 1.7 and 2.3. That is, � is usually around 2. Why do we examine

squared Fourier coe�cients? Its because squared values are associated with the energy in the image through

Parseval’s identity:

Energy =

Z
L

0

Z
H

0
|f(x, y)|2dydx =

1X

n=1

1X

m=1

B
2
n,m

.

In the accompanying code, the coe�cients Bn,m are computed and represented as a matrix, and rendered of

the squared values of the Bn,m. The energy spectrum is a log-log plot of the average of vertical and horizontal

average energies:
1
2avgm(B

2
n,m

) +
1
2avgm(B

2
m,n

) = b
2
n
—this gives an estimate of the spectral energy at each

spatial frequency n⇡ per unit image length L. If b
2
n
⇠ 1

n� , then taking the log of both sides we get:

ln(b
2
n
) ⇠ ln

⇣
1

n�

⌘
= �� ln(n).

That is, the log squared coe�cient averages will be linearly related to the log of n with slope ��. The code

performs a linear curve fitting on the log-log data and finds the best-fit �-value as our estimate. For the two

images you choose, record the �-estimates and report them in your results along with your images. Use a

large truncation N = 100 value—it may take a while. Report the gamma-values you find, and the standard

deviations of the linear fit.

How to use the code: Put the images you want to analyze in a file folder with the .m code given with this

experiment. Type in the code the file name of the image you want to examine and edit the code to set an

N value for your truncation. There is a variable called ”experiment”, which you set to 1 or 2, respectively.

The code will output figures. Figure 1 will give you the Nth Fourier truncated image in greyscale. Figure 2

will output the results for experiment 2.

Page 2



Tues Apr 17
         Symmetric matrices and the spectral theorem, 7.1-7.2

Announcements: 

Warm-up Exercise:



Recall that the transpose operation swaps rows with columns, and vise verse.  These properties arose from
the actual definition for AT, which was

entryi jA
T = entryj i A.

The i j and j i  locations on a matrix are reflections across the diagonal of each other.  (This is the matrix 
version of the 2 reflection across the line x2 = x1 that we've encountered several times in this course.)  See
how this plays out for the matrix A below, by finding the transpose three ways:  Turning rows into 
columns; turning columns into rows; reflecting across the diagonal.

A =

1 2 7

1 3 2

9 4 2

Def  A square matrix is symmetric if and only if AT = A.  

Exercise 1  Which of the following matrices is symmetric, and which is not?
1a) 

B  

4 2 1

2 0 2

1 2 7
1b)

C  

1 2 1

2 1 2

2 2 3
 



The Spectral Theorem asserts that all n n symmetric matrices A  (with real number entries) are 
diagonalizable, with n linearly independent real eigenvectors and associated eigenvalues.  Furthermore, 
eigenvectors with different eigenvalues are automatically orthogonal.  (For eigenspaces with dimension 
greater than one, one can use Gram Schmidt to create orthonormal bases).  Thus, the eigenvector basis of 

n can be chosen to be orthonormal.  In otherwords, we may express

A = P 1D P = PT D P

where P is an orthogonal matrix which can also be interpreted as a change of basis matrix.  Let's see how 
this plays out in an example.  This will forshadow all of sections 7.1-7.2.  You'll notice that we're using 
major concepts and ideas from throughout the course, which is not a bad way to be reviewing course 
material at this point of the semester.

Example  

1  Consider the curve in 2 defined implicitly as the solution set to  the equation

2 x2 2 y2 5 x y = 1.
Can you identify the curve as a conic section?  Can you graph it?  Note the x y term!

2  Does the function f x, y  = 2 x2 2 y2 5 x y have a local maximum or local minimum at 
x, y = 0, 0 ?   Note, the gradient

 f = f x , f y  = 4 x 5 y, 4 y 5 x  = 0, 0   at the point 0, 0 ,
so the origin is at least a candidate for a local max or min.

Exercise 1a.   Check that can rewrite the quadratic expression as

2 x2 2 y2 5 x y = x y
2

5
2

5
2

2

x

y
 .



Note, in general, if v, w n  and if A is an n n matrix then
vT1 n An n wn 1  

is a 1 1 matrix, i.e. a scalar.  And its value is

vT A w = 
i = 1

n

vi entryi A w  =  
i = 1

n

vi 
j = 1

n

ai jwj  = 
i, j = 1

n

ai j viwj .

So given a quadratic expression ("quadratic form")  in any number of variables x1, x2,  xn one can 
rewrite the quadratic form as 

xT A x 

and one can choose to make A a symmetric matrix, as we did in our specific example. by splitting cross 
terms symmetrically.



Exercise 1a  Find the eigenvalues and eigenvectors for the matrix we're using to express our quadratic 
expression.

2 x2 2 y2 5 x y = x y
2

5
2

5
2

2

x

y
 .

Solution:  E
=

1
2

= span
1

1
 

E
=

9
2

= span
1

1
.



Was it an accident that the two eigenvectors were orthogonal?  No.  Here's why that will always be true as 
long as the eigenvalues are different, for any symmetric matrix of arbitrary size:  Let A be symmetric, and 
let 

A v = 1v       A w = 2 w

with 1 2.   Because AT = A, we claim that
w  A v  = A w  v .

One way to see this is by noting
w  A v =  wT A v  .

Since the result of this operation is a scalar, it equals its transpose:

wT A v = wT A v 
T 

 = vTATw = vT A w = v  A w .

But 
w  A v = w  1 v = 1 v  w.

A w  v = 2 w v.

So, since 1 2 is must be that v  w = 0!

*  And a special fact for 2 2 symmetric matrices and eigenvectors in 2:  If A v =  v for v  0 let 
w  v .  Then w is automatically an eigenvector:

w  A v = w  v =  w  v = 0.

So

0 =  w  A v = v  A w  v  A w  A w  span w   
because we're in 2.  So w is also an eigenvector, automatically.



Continuing ...

2 x2 2 y2 5 x y = x y
2

5
2

5
2

2

x

y
                     

and for

A =
2

5
2

5
2

2
 ;       E

=
1
2

= span
1

1
,  E

=
9
2

= span
1

1
.

This suggests creating an orthonormal eigenbasis!  And we'll order the eigenvectors so that the 
corresponding orthogonal matrix is a rotation and not a reflection (by making the determinant of the matrix 

1 instead of 1).

B  = 

1

2

1

2

,  

1

2

1

2

       P = 

1

2

1

2

1

2

1

2

A = P 1D P = PT D P

Note
P =    P E B 

where as always, 

E = 
1

0
,

0

1
.

For v 2  write v =
x

y
 in standard coordinates and v B = 

x

y
.    (The text uses 

x1

x2
 and 

y1

y2
 

respectively.)  So the two coordinate systems are related by

x

y
 =  

1

2

1

2

1

2

1

2

x

y
.



Do algebra!

2 x2 2 y2 5 xy  = x y
2

5
2

5
2

2

x

y

= x y

1

2

1

2

1

2

1

2

2
5
2

5
2

2

1

2

1

2

1

2

1

2

x

y
 

= x y

9
2

0

0
1
2

x

y
     (because PTAP = D)

= 
9
2

x 2  
1
2

y 2.



So the original curve with equation
2 x2 2 y2 5 xy = 1

in the standard coordinate system has equation
9
2
x 2  

1
2
y 2 = 1

with respect to the rotated coordinate system!  

Answer to 1a)  This curve is a hyperbola!  In the rotated coordinate system its equation is
x 2

2
3

2   
y 2

2
2 = 1.

Answer to 1b)  No!  f x, y = 2 x2 2 y2 5 xy   does not have a local min or max at 0, 0 .  The origin 
is a saddle point, because in the rotated coordinate system

f x , y =
9
2
x 2 1

2
y 2.

Old pictures from when I could still sketch well: 



> > 

> > 

Maple verification:   To be continued ....
with plots :
 implicitplot 2 x2 2 y2 5 x y = 1, x = 3 ..3, y = 3 ..3, grid = 200, 200 ;

x
3 2 1 0 1 2 3

y

3

2

1

1

2

3

plot3d 2 x2 2 y2 5 x y, x = 3 ..3, y = 3 ..3 ;



Wed Apr 18
         7.1-7.2  Diagonalizing quadratic forms and surfaces and curves defined implicitly with quadratic 
equations, via the spectral theorem continued; with proof of spectral theorem appended.

Announcements: 

Warm-up Exercise:



Spectral Theorem  Let A be an n n symmetric matrix.  Then all of the eigenvalues of A are real, and there 
exists an orthonormal eigenbasis B = u1, u2, ... un  consisting of eigenvectors for A.  Eigenspaces with 
different eigenvalues are automatically orthogonal to each other.  If any eigenspace has dimension greater 
than 1, its orthonormal basis may be constructed via Gram Schmidt.    (Proof of spectral theorem at end 
of today's notes.)

Diagonalization of quadratic forms:  Let 

Q x =
i, j = 1

n

ai j xi xj  = xT A x  

for a symmetric matrix A, with real entries.  A symmetric  by the spectral theorem there exists an 
orthonormal eigenbasis B = u1, u2, ... un .

For the corresponding orthogonal matrix 
P = u1  u2  ...  un 

D = PT A P ,

where D is the diagonal matrix of eigenvalues corresponding to the eigenvectors in P.  And we have

x = P y  

where y = x B  and P =  P E B .  Thus

Q x = xT A x

= yT PTAP y = yT D  y  

= 
i = 1

n

i yi
2 .

So by the orthogonal change of variables all cross terms have been removed. Applications include conic 
curves, quartic surfaces, multivariable second derivative test, singular value decomposition theorem, and 
more.



Material we need for Prof. Alberts' guest lecture Friday on Principal Component Analysis.  (The text 
discusses most of this background material in 7.1, 7.2)

Definition:  The quadratic form Q x =
i, j = 1

n

ai j xi xj  = xT A x  (for A a symmetric matrix) is called

positive definite if
Q x 0   for all x 0 .

From the previous page, we see that this is the same as saying that all of the eigenvalues of A are positive. 

Theorem:  The "outer product" way of computing the matrix product A B.  (Section 2.4 topic on partitioned
matrices that we skipped....our usual way is with dot product or rows of A with columns of B, aka an 
"inner product").  

(1)  first, notice that the product of an   m 1 column vector with a 1 n row vector is an m n matrix:

a1

a2

a3

b1 b2  =  

a1 b1 a1b2

a2b1 a2b2

a3b1 a3b2

.

(1)  Let Am p and Bp n.  Express A in terms of its columns, and B in terms of its rows:

  A = 
a1 a2

...
ap

      B =

b1 

b2

:

bp

    .

Then 

A B = 
j = 1

p

aj bj .



We can illustrate the general proof by considering the example in which A and B are each 3 3:  Look 
column by column in the output of each expression to verify the identity, using the the linear combination 
form of matrix times vector, for A B:

a11 a12 a13

a21 a22 a23

a31 a32 a33

b11 b12 b13

b21 b22 b23

b31 b32 b33

  

= 

a11

a12

a13

b11 b12 b13  

a12

a22

a32

 b21 b22 b23

a13

a23

a33

b31 b32 b33 .



Spectral decomposition for symmetric matrices.   Let An n be symmetric (and positive definite, for the 
applications Prof. Alberts will talk about on Friday).  Order the eigenvalues as

1 2  ... n 0

and let 
u1, u2, ... , un

be a corresponding orthonormal eigenbasis of n. Let P be the orthogonal matrix 

P = u1, u2, ... un   

with
A P = P D 

where D is the diagonal matrix with diagonal entries  1 2  ... n 0.  

Then

A = P D PT

= 
u1 u2

...
un

1 0 ... 0

0 2 ... 0

: ... ... 0

0 0 ... n

u1
T 

u2
T

:

un
T

  

=

  

1 u1

  

  

  

2u2

  

  

...

  

nun

  

  

u1
T 

u2
T

:

un
T

A = 1 u1 u1
T  2 u2 u2

T  ...  nun un
T  

"Principal component analysis" makes use of the fact that if only a few of the eigenvalues of A are large 
and the rest are near zero, then the corresponding leading terms in the expression above are a good 
approximation for the matrix A.



Remark:  There's slick way to see this spectral decomposition matrix identity that doesn't use the outer 
product but uses our work on projection instead:

x = x u1 u1  x u2 u2   ... x un un

 A x = x u1 1u1   x u2 2u2    x un nun  

= 1 u1 u1
T x   2u2 u2

Tx      nun un
Tx   

  A x =  1 u1 u1
T  2 u2 u2

T  ...  nun un
T  x .

Since this is true for all x, (in particular for the standard basis vectors, which lets us recover the columns of
A) we deduce
 

A = 1 u1 u1
T  2 u2 u2

T  ...  nun un
T .  



Testing spectral decomposition in a small example:

A =
2

5
2

5
2

2

         E
=

9
2

= span
1

1
    E

=
1
2

= span
1

1

u1 = 
1

2

1

1
   u2 = 

1

2

1

1
 

1 u1 u1
T  2 u2 u2

T = 
9
2

 
1

2

1

1
1

2
1 1   

1
2

 
1

2

1

1
1

2
1 1   

=
9
4

1 1

1 1
 

1
4

1 1

1 1
 =

2
5
2

5
2

2
 !!!!



Definition  A square n n matrix Q is called orthogonal if its columns are ortho-normal.  (You can read 
more about orthogonal matrices at e.g. Wikipedia.)

Theorem.  Let Q  be an orthogonal matrix.  Then
a)  Q 1 = QT.   

b)   The rows of Q are also ortho-normal.

c)   the transformation T : n n given by 
T x  = Q x

preserves dot products and magnitudes, (so also volumes, since cubes generated by perpendicular vectors 
will be transformed into equal-volume cubes).  In other words, for all x, y n, 

T x T y  = x  y  

T x = x .

d)  The only matrix transformations T : n n that preserve dot products are orthogonal transformations.
 (These transformations are often referred to as isometries.)





Example  Identify and sketch the surface defined implicitly by

x1
2  x2

2  2 x3
2  2 x1 x2  4 x1 x3  4 x2 x3 = 8.

Exercise 1)  Find the symmetric matrix so that

x1
2  x2

2  2 x3
2  2 x1 x2  4 x1 x3  4 x2 x3 =  xT A x.

Recall that 

xT A x  = 
i, j = 1

n

ai j xi xj .

If we found the matrix correctly technology tells us that

E
= 2

= span

1

1

1
,  E

= 2
 = span

1

1

0
,  E

= 4
= span

1

1

2
.

(positively oriented in this order)



x1
2  x2

2  2 x3
2  2 x1 x2  4 x1 x3  4 x2 x3 = 8 

xT A x = 8

For

P =

1

3

1

2

1

6

1

3

1

2

1

6

1

3
0

2

6

PTA P = D 

xT A x = 8

yTP
T
A P y = 8

yT D y = 8 

2 y1
2  2 y2

2 4 y3
2 = 8.

We can try to sketch this in the rotated coordinate system.  It's an elliptic hyperboloid of one sheet.  :-)  



> > with plots :
 implicitplot3d x2 y2 2 z2 2 x y 4 x z 4 y z = 8, x = 4 ..4, y = 4 ..4, z = 4 ..4, grid

= 20, 20, 20 ;



from Wikipedia, "quadric surfaces".  There is also a Wikipedia page on conic sections.






