
Math 2270-004  Week 13 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  6.4-6.8 

Mon Apr 9
       6.4   Gram Schmidt and A = QR decomposition.  Orthogonal matrices

Announcements: 

Warm-up Exercise:

 



We begin on Monday with a continuation of the discussion of Gram-Schmidt orthogonalization from 6.4.  
Keeping track of the G.S. process carefully yields the A = QR matrix product decomposition theorem, 
where Q is an "orthogonal matrix" consisting of an orthonormal basis for the span of the columns of A and
R is an upper triangular matrix with positive entries along the diagonal.  This decomposition is one way to 
understand why matrix determinants correspond to  Volumes, in n, among other uses.  

Section 6.5, Least square solutions is about finding approximate solutions to inconsistent matrix 
equations, and relies on many of the ideas we've been studying in Chapter 6 up to this point.  

Section 6.6, Applications to linear models, is an application of the least squares method to e.g. linear 
regression in statistics.  

Finally, sections 6.7 and 6.8 generalize our orthogonality discussions that began with the dot product, to
inner products in other vector spaces such as function spaces.  These ideas lie at the heart of physics 
applications that use Fourier series, and more recent applications such as image and audio compression.



Recall the Gram-Schmidt process from Friday:

Start with a basis B  = w1, w2, ... wp  for a subspace W of n.   How can you convert it into an 
orthonormal basis?  Here's how!  The inductive process is called Gram-Schmidt orthogonalization.

Let W1 = span w1 .  Define  u1 = 
w1

w1
.  Then u1  is an orthonormal basis for W1.

Let W2 = span w1, w2 = span u1, w2 .

     Let z2 = w2 projW
1
w2 =  w2 w2 u1 u1  so z2 u1.

     Define u2 = 
z2
z2

.   So u1, u2  is an orthonormal basis for W2.

Inductively,

Let  Wj = span w1, w2, ... wj  = span u1, u2,  ...  uj 1, wj .

     Let zj = wj  projW
j 1

wj  = wj  wj u1 u1   wj u2 u2    ... wj uj 1 uj 1    .

...so  zj  span u1, u2, ... uj 1 .

     Define  uj = 
zj
zj

.   Then u1, u2, ... uj   is an orthonormal basis for Wj .

Continue up to j = p.



We're denoting the original basis for W by B  = w1, w2, ... wp .  Denote the orthonormal basis we've 
constructed with Gram-Schmidt by O = u1, u2, ... up  .  Because O is orthonormal it's easy to express 
these two bases in terms of each other.  Notice

Wj = span w1, w2, ... wj  =  span u1, u2, ... uj       for each 1 j p.

So,

w1 = w1 u1 u1 

w2 = w2 u1 u1  w2 u2 u2 
:

wj = wj u1 u1  wj u2 u2  ....   wj uj uj 
:

wp =
l = 1

p

wl ul ul  .

Notice that the coefficients of the last terms in the sums above, namely wj uj  can be computed as

wj uj = zj
zj
 zj

=  zj .

In matrix form (column by column) we have

Thus any matrix with linearly independent columns may be written in factored form as above, (
W = Col A ,

An p = Qn p Rp p.

This factorization contains geometric information and can simplify the computational work needed to solve
matrix equations A x = b.



From previous page...
                An p = Qn p Rp p

shortcut  (or what to do if you forgot the formulas for the entries of R)  If you just know Q you can 
recover R by multiplying both sides of the  equation on the previous page by the transpose  QT of the Q 
matrix:

A = Q R
QTA = QTQ R = I R = R.  

Example)   From last Friday, 

B = 
1

1
,  

0

4
,   O = 

1

2
1

2

,  

1

2
1

2

  .

1 0

1 4
 =  

1

2

1

2
1

2

1

2

w1 u1 w2 u1

0 w2 u2
 = 

1

2

1

2
1

2

1

2

2 2 2

0 2 2
 = Q R .

Exercise 1)   Verify that R could have been recovered via the formula 
QT A = R



From previous page ...

1 0

1 4
 =  

1

2

1

2
1

2

1

2

2 2 2

0 2 2
.

Exercise 2)  Verify that the A = Q R factorization in this example may be further factored as

 
1 0

1 4
= 

1

2

1

2
1

2

1

2

2 0

0 2 2

1 2

0 1
.

   So, the transformation T x  = A x is a composition of (1) an area-preserving shear, followed by (2) a 

diagonal scaling that increases area by a factor of 2 2 2 = 4, followed by a rotation of 
4

, which does

not effect area.  Since determinants of products matrices are the products of determinants (we checked this 
back when we studied determinants), and area expansion factors of compositions are also the products of 
the area expansion factors, the generalization of this example explains why the determinant of A (or its 
absolute value in general) coincides with the area expansion factor, in the 2 2 case.  You show in your 
homework that the only possible Q matrices in the 2 2 case are rotations as above, or reflections across 
lines through the origin.  In the latter case, the determinant of Q is 1, and the determinant of A is negative.



Example from last Friday.

B =

1

1

0
,

0

4

0
,

1

2

3
                 O =

1

2
1

2
0

,

1

2
1

2
0

,

0

0

1
 .

Exercise 3a  Find the A = Q R factorization based on the data above, for 

A = 

1 0 1

1 4 2

0 0 3

solution A =

1

2

1

2
0

1

2

1

2
0

0 0 1

2 2 2
1

2

0 2 2
3

2

0 0 3

Exercise 3b  Further factor R into a diagonal matrix times a volume-preserving shear and interpret the 
transformation T x  = A x as a composition of (1) a volume preserving shear, followed by (2) a 
coordinate scaling that increases volume by a factor of 12, followed by a rotation about the x3 axis in 3, 
which preserves volume.  The generalization of this example explains why the determinant of A (or its 
absolute value in general) is the volume expansion factor for the transformation T x = A x.



Definition  A square n n matrix Q is called orthogonal if its columns are ortho-normal.  (You can read 
more about orthogonal matrices at e.g. Wikipedia.)

Theorem.  Let Q  be an orthogonal matrix.  Then
a)  Q 1 = QT.   

b)   The rows of Q are also ortho-normal.

c)   the transformation T : n n given by 
T x  = Q x

preserves dot products and magnitudes, (so also volumes, since cubes generated by perpendicular vectors 
will be transformed into equal-volume cubes).  In other words, for all x, y n, 

T x T y  = x  y  

T x = x .

d)  The only matrix transformations T : n n that preserve dot products are orthogonal transformations.
 (These transformations are often referred to as isometries.)



Tues Apr 10
         6.5 Least squares solutions, and projection revisited.

Announcements: 

Warm-up Exercise:



Least squares solutions, section 6.5

In trying to fit experimental data to a linear model you must often find a "solution" to
 A x = b 

where no exact solution actually exists.  Mathematically speaking, the issue is that b is not in the range of 
the transformation

T x = A x,
i.e.

x  Range T = Col A.

In such a case, the least squares solution(s) x  solve(s)

 A x  = projCol A  b .

Thus, for the least squares solution(s),  A x  is as close to b as possible.  Note that there will be a unique 
least squares solution x  if and only if Nul A = 0 , i.e. if and only if the columns of A are linearly 
independent.  (Recall, any two solutions to the same nonhomogeneous matrix equation differ by a solution 
to the homogeneous equation.)



Exercise 1  Find the least squares solution to 
1 2

0 1

1 0

x1

x2
 =  

3

3

3
.

Note that the implicit equation of the plane spanned by the two columns of A is
y1 2 y2 y3 = 0.

You know two ways to find that implicit equation (!) .....at least it's easy to check that the the two column 
vectors satisfy it.  Since 3 3 3 T does not satisfy the implicit equation, there is no exact solution to this 
problem.  If you wish, it could be instructive review the two ways.

You may use the Gram-Schmidt ortho-normal basis for Col A, namely

O = 1

2

1
0
1

,  
1

3

1
1
1

.

Solution:



There's actually a smart way to find the least squares solutions that doesn't require an orthonormal basis for
Col A.  And as a result, it turns out that one can also compute projections onto a subspace without first 
constructing an orthonormal basis for the subspace !!!  Consider the following chain of equivalent 
conditions on x:

 A x = projCol A  b 

b  A x   Col A

AT b  A x = 0 

AT b  ATA x = 0 

AT A x = AT b .

This last equation will always be consistent because projections exist.  And if the columns of A are linearly
independent the solutions to the top equation, and hence the final equation, will be unique.  So the matrix 
AT A  will be invertible in that case.  The final matrix equation is called the normal equation for least 
squares solutions.

Exercise 2  Re-do Exercise 1 using the normal equation, i.e find the least squares solution x  to
1 2

0 1

1 0

x1

x2
 =  

3

3

3
.

And then note that A x  is projCol Ab, i.e. you found the projection of 3 3 3 T without ever finding and 
using an ortho-normal basis!!!



Exercise 3  In the case that ATA is invertible we may take the normal equation for finding the least squares 
solution to A x = b and find A x = projCol Ab directly:

AT A x = AT b

x = ATA
1
AT b

projCol Ab = A x = A ATA
1
ATb.

Verify for the third time that for W = span

1

0

1
,

2

1

0
, projW

3

3

3
=  

4

1

2
 by "plug and chug".



Wed Apr 11
         6.6  Fitting data to "linear" models.

Announcements: 

Warm-up Exercise:



Applications of least-squares to data fitting.

     Find the best line formula y = m x  b to fit n data points x1, y1 , x2, y2  , .... , xn, yn .  We 

seek 
m
b

 so that

y1

y2

y3

:
yn

 =  m

x1

x2

x3

:
xn

  b 

1
1
1
:
1

.

In matrix form, find 
m
b

 so that

x1 1

x2 1

x3 1

: :
xn 1

m
b

 =  

y1

y2

y3

:
yn

 .           A 
m
b =  y  .

There is no exact solution unless all the data points are actually on a single line!

Least squares solution:  

AT A 
m
b

 =  ATy .



AT A 
m
b  =  ATy

As long as the columns of A are linearly independent (i.e.at least two different values for xj) there is a 

unique solution m, b T.   Furthermore, you are actually solving 

A x = projW y
where

W = span

x1

x2

:
xn

,  

1
1
:
1

,

so 
y1

y2

:
yn

  m

x1

x2

:
xn

b

1
1
:
1

2

 

is as small as possible.  In other words, you've minimized the sum of the squared vertical deviations from 
points on the line to the data points,

i = 1

n

yi mxi bi
2.

Exercise 1   Find the least squares line fit for the 4 data points 1, 0 , 0, 1 , 1, 1 , 2, 0 .  Sketch.



Example 2  Find the best quadratic fit to the same four data points.  This is still a "linear" model!!  In other 
words, we're looking for the best quadratic function

p x = c0  c1 x c2 x2 
to fit to the four data points 

1, 0 , 0, 1 , 1, 1 , 2, 0 .

We want to solve

c0

1

1

:

1

  c1

x1

x2

:

xn

c2

x1
2

x2
2

:

xn
2

 =  

y1

y2

:

yn

.

For our example this is the system

c0

1

1

1

1

c1

1

0

1

2

c2

1

0

1

4

=

0

1

1

0

.

1 1 1

1 0 0

1 1 1

1 2 4

c1

c2

c3

=

0

1

1

0

.

I used technology (Maple, with which I write these notes), and the least squares normal equation , see next
page...

ATA c = AT b .



(1)(1)

> > 

> > 

with LinearAlgebra :

C

1 1 1

1 0 0

1 1 1

1 2 4

:  b

0

1

1

0

:

 c Transpose C .C 1.Transpose C .b;

c  

1
1
2
1
2

with plots :
 plot1 plot 1 .5 t .5 t2, t = 1.5 ..2.5, color = black :
 plot2 pointplot 1, 0 , 0, 1 , 1, 1 , 2, 0 , color = red, symbol = circle, symbolsize 

= 18 :
 display plot1, plot2 , title = 'oops !' ;

t
1 1 2

0.8

0.2

0.2

0.6

1
oops!



Math 2270-004
April 11, 2018

Applying  least squares linear regression to obtain power law fits

How do you test for power laws?
      Suppose you have a collection of n data points

x1, y1 , x2, y2 , x3, y3 , ..., xn, yn
and you expect there may be a good power-law fit

y = b xm

which approximately explains how the yi's are related to the xi's .  You would like to find the "best 
possible" values for b and m to make this fit.  It turns out, if you take the ln-ln data, your power law 
question is actually just a best-line fit question:
Taking (natural) logarithms of the proposed power law yields

ln y = ln b m ln x .
So, if we write Y = ln y   and  X = ln x ,  B = ln b , this becomes the equation of a line in the new 
variables X and Y:

Y = mX B
Thus, in order for there to be a power law for the original data, the ln-ln data should (approximately) 
satisfy the equation of a line, and vise verse.  If we get a good line fit to the ln-ln data, then the slope m of 
this line is the power relating the original data, and the exponential eB of the Y-intercept is the 
proportionality constant b in the original relation y = b xm.  With real data it is not too hard to see if the ln-ln
data is well approximated by a line, in which case the original data is well-approximated by a power law.  



Astronomical example  As you may know, Isaac Newton was motivated by Kepler's (observed) Laws of
planetary motion to discover the notions of velocity and acceleration, i.e. differential calculus and then 
integral calculus, along with the inverse square law of planetary acceleration around the sun.....from which 
he deduced the concepts of mass and force, and that the  universal inverse square law for gravitatonal 
attraction was the ONLY force law depending only on distance between objects, which was consistent 
with Kepler's observations!  Kepler's three observations were that

(1)  Planets orbit the sun in ellipses, with the sun at one of the ellipse foci.
(2)  A planet sweeps out equal areas from the sun, in equal time intervals, independently of where it is in 
its orbit.
(3)  The square of the period of a planetary orbit is directly proportional to the cube of the orbit's semi-
major axis.

So, for roughly circular orbits, Keplers third law translates to the statement that the period t is related to the
radius r, by the equation t = b r1.5, for some proportionality constant b. Let's see if that's consistent with 
the following data:

Planet                   mean distance r from sun                                        Orbital period t
                    (in astronomical units where 1=dist to earth)                    (in earth years)

Mercury                                      0.387                                                      0.241
Earth                                            1.                                                             1.
Jupiter                                          5.20                                                       11.86
Uranus                                       19.18                                                       84.0
Pluto                                           39.53                                                      248.5

Taking the (natural) logarithm of the data points, as put into a matrix, using Wolfram alpha.



(1)(1)

> > 

We want the least squares solution to the ln-ln data, Y = m X  B  

.9493 1

0 1

1.64866 1

2.95387 1

3.67706 1

m

b
=

1.42296

0

2.47317

4.43082

5.51544

.

A x  = b

AT A x = AT  b

x  = ATA
1
AT  b

I didn't have time (yet) to do these steps neatly at Wolfram alpha.  In Maple:
with LinearAlgebra :

 A

.9493 1

0 1

1.64866 1

2.95387 1

3.67706 1

:

 Transpose A .A 1.Transpose A .

1.42296

0

2.47317

4.43082

5.51544

;

1.49982355212829

0.000465682813906573

So we get essentially the correct power.



> > 

> > 

with plots :
 plot1 pointplot .9493, 1.42296 , 0, 0 , 1.64866, 2.47317 , 2.95387, 4.43082 ,

3.67706, 5.51544 , color = red, symbol = circle, symbolsize = 18 :
 plot2 plot 1.4998 x .0005, x = 1 ..4 :
 display plot1, plot2 , title = `line fit to log-log data` ;

x
1 1 2 3 41

1
2
3
4
5
6

line fit to log-log data

plot3 pointplot .387, .241 , 1., 1. , 5.20, 11.86 , 19.18, 84.0 , 39.53, 248.5 , color
= red, symbol = circle, symbolsize = 18 :

 plot4 plot exp 0.00046568 R1.49982, R = 0 ..50 :
 display plot3, plot4 , title = `Kepler's Laws` ;

R
10 20 30 40 50

0

100

200

300

Kepler's Laws



Fri Apr 13
         6.7-6.8  Introduction to inner product spaces.

Announcements: 

Warm-up Exercise:





Examples of function space inner products:

V = f : a, b  s.t. f  is continuous  C a, b .

f, g
a

b
f t  dt        (or some fixed positive multiple of this integral).

Exercise 1)   Check the algebra requirements  a), b), c) for an inner product.

This inner product f, g  is not so different from the n dot product if you think of Riemann sums:  Let 

 t = 
b a

n
;       tj = a  j  t , j = 1, 2, .. n.

Then

f, g  = 

a

b

f x  dx  = limn  
j = 1

n

 f tj  g tj t     

= limn     

f t1
f t2

:
f tn

g t1
g t2

:
g tn

 t  .



Prime examples:  

Example  For the inner product on C 1, 1  given by

f, g
1

1
f t g t  dt 

If one applies Gram-Schmidt to the the set 1, t, t2, t3, ....   one creates the (normalized) Legendre 
polynomials which have an interesting entry at Wikipedia.  Projecting a continuous function f onto

Wn = span 1, t, t2, ... tn

will create polynomical approximations, that improve in the sense that
limn f projW

n
f 2  = 0.



Example  for the inner product on C ,  given by

f, g
1

f t  dt  

The infinite set of functions
1

2
, cos t , sin t , cos 2 t , sin 2 t , ... , sin nt , cos nt , .....  

is already orthonormal!  Thus begins the subject of Fourier Series.  (See Wikipedia.)

To show the ortho-normality properties one applies the following trig identities, which follow from the 
addition angle formulas

cos m t  cos n t  = 
1
2

cos m n t cos m n  t  

cos2 n t = 
1
2

cos 2 n t 1

sin m t  sin n t  = 
1
2

cos m n  t   cos m n t

sin2 n t  = 
1
2

cos 2 n t 1

cos m t  sin n t = 
1
2

sin m n t sin m n t  

Exercise  verify how ortho-normality follows from these identities.



Let Vn span
1

2
, cos t , sin t , cos 2 t , sin 2 t , .... cos n t , sin n t  be the 2 n 1 

dimensional subspace spanned by the first 2 n 1 of these functions.  A deep theorem says that if 
f C ,   (actually, f only needs to be piecewise continous), then 

limn f projV
n
f  = 0.

Because we have an orthonormal basis for Vn the projection formula is easy to write down:

projV
n
 f = f ,

1

2

1

2
f, cos t cos t   f, sin t  sin t   ....  f, cos n t cos n t

f, sin n t  sin n t
.

We write

a0 = f, 1 =
1

f t  dt

ak = f, cos k t  = 
1

f t cos k t  dt

bk = f, sin k t  = 
1

f t  sin k t  dt.

Then

projV
n
 f = 

a0

2
 
k = 1

n

ak cos k t   
k = 1

n

bk sin k t .

The infinite series converges to f t  pointwise at places where f is differentiable, and to the average of 
right and left hand limits at jump discontinuities, so we also often consider the infinite Fourier series

f t  ~  
a0

2
 
k = 1

ak cos k t   
k = 1

bk sin k t .



f t  ~  
a0

2
 
k = 1

ak cos k t   
k = 1

bk sin k t .

a0 = f, 1 =
1

f t  dt       ak = f, cos k t  = 
1

f t cos k t  dt          

bk = f, sin k t  = 
1

f t  sin k t  dt.  

Exercise:  Define f t  = t, on the interval t .   Show

t  ~  2 
k = 1

1 n 1

n
sin n t



> > 

> > 

> > 

projV
10

f t :

with plots :
 plot1 plot t 2  2  Heaviside t 2 Heaviside t , t = 2 ..2 , color

= black :

 plot2 plot 2
n = 1

10

1 n 1 sin n t
n

, t = 2 ..2 , color = red :

 display plot1, plot2 , title = 'Fourier Series !' ;

t

2 3 
2 2 2

3 
2

2 

3
2
1

1
2
3

Fourier Series!


