We will not necessarily finish the material from a given day's notes on that day. We may also add or subtract some material as the week progresses, but these notes represent an in-depth outline of what we plan to cover. These notes cover material in 6.4-6.8

Mon Apr 9
- 6.4 Gram Schmidt and $A = QR$ decomposition. Orthogonal matrices

Announcements:

Warm-up Exercise:
We begin on Monday with a continuation of the discussion of Gram-Schmidt orthogonalization from 6.4. Keeping track of the G.S. process carefully yields the $A = QR$ matrix product decomposition theorem, where Q is an "orthogonal matrix" consisting of an orthonormal basis for the span of the columns of A and R is an upper triangular matrix with positive entries along the diagonal. This decomposition is one way to understand why matrix determinants correspond to \pm Volumes, in \mathbb{R}^n, among other uses.

Section 6.5, *Least square solutions* is about finding approximate solutions to inconsistent matrix equations, and relies on many of the ideas we've been studying in Chapter 6 up to this point.

Section 6.6, *Applications to linear models*, is an application of the least squares method to e.g. linear regression in statistics.

Finally, sections 6.7 and 6.8 generalize our orthogonality discussions that began with the dot product, to *inner products* in other vector spaces such as function spaces. These ideas lie at the heart of physics applications that use Fourier series, and more recent applications such as image and audio compression.
Recall the Gram-Schmidt process from Friday:

Start with a basis $B = \{w_1, w_2, \ldots, w_p\}$ for a subspace W of \mathbb{R}^n. How can you convert it into an orthonormal basis? Here's how! The inductive process is called Gram-Schmidt orthogonalization.

Let $W_1 = \text{span}\{w_1\}$. Define $u_1 = \frac{w_1}{\|w_1\|}$. Then $\{u_1\}$ is an orthonormal basis for W_1.

Let $W_2 = \text{span}\{w_1, w_2\} = \text{span}\{u_1, w_2\}$.

Let $z_2 = w_2 - \text{proj}_{W_1} w_2 = w_2 - (w_2 \cdot u_1)u_1$ so $z_2 \perp u_1$.

Define $u_2 = \frac{z_2}{\|z_2\|}$. So $\{u_1, u_2\}$ is an orthonormal basis for W_2.

Inductively,

Let $W_j = \text{span}\{w_1, w_2, \ldots, w_j\} = \text{span}\{u_1, u_2, \ldots, u_{j-1}, w_j\}$.

Let $z_j = w_j - \text{proj}_{W_{j-1}} w_j = w_j - (w_j \cdot u_1)u_1 - (w_j \cdot u_2)u_2 - \ldots - (w_j \cdot u_{j-1})u_{j-1}$.

...so $z_j \perp \text{span}\{u_1, u_2, \ldots, u_{j-1}\}$.

Define $u_j = \frac{z_j}{\|z_j\|}$. Then $\{u_1, u_2, \ldots, u_j\}$ is an orthonormal basis for W_j.

Continue up to $j = p$.
We're denoting the original basis for W by $B = \{\mathbf{w}_1, \mathbf{w}_2, ... \mathbf{w}_p\}$. Denote the orthonormal basis we've constructed with Gram-Schmidt by $O = \{\mathbf{u}_1, \mathbf{u}_2, ... \mathbf{u}_p\}$. Because O is orthonormal it's easy to express these two bases in terms of each other. Notice

$$W_j = \text{span} \{\mathbf{w}_1, \mathbf{w}_2, ... \mathbf{w}_j\} = \text{span} \{\mathbf{u}_1, \mathbf{u}_2, ... \mathbf{u}_j\} \quad \text{for each} \quad 1 \leq j \leq p.$$

So,

$$w_1 = (\mathbf{w}_1 \cdot \mathbf{u}_1) \mathbf{u}_1 \quad w_2 = (\mathbf{w}_2 \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{w}_2 \cdot \mathbf{u}_2) \mathbf{u}_2 \quad \vdots \quad w_j = (\mathbf{w}_j \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{w}_j \cdot \mathbf{u}_2) \mathbf{u}_2 + ... + (\mathbf{w}_j \cdot \mathbf{u}_j) \mathbf{u}_j \quad \vdots \quad w_p = \sum_{j=1}^{p} (\mathbf{w}_j \cdot \mathbf{u}_j) \mathbf{u}_j.$$

Notice that the coefficients of the last terms in the sums above, namely $(\mathbf{w}_j \cdot \mathbf{u}_j)$ can be computed as

$$(\mathbf{w}_j \cdot \mathbf{u}_j) = \frac{z_j}{\|z_j\|} = \|z_j\|.$$

In matrix form (column by column) we have

$$A_n \times p \quad Q_n \times p \quad R_p \times p.$$

Thus any matrix with linearly independent columns may be written in factored form as above, $(W = \text{Col} A)$,

$$A_{n \times p} = Q_{n \times p} R_{p \times p}.$$

This factorization contains geometric information and can simplify the computational work needed to solve matrix equations $A \mathbf{x} = \mathbf{b}$.
From previous page...

\[A_{n \times p} = Q_{n \times p} R_{p \times p} \]

shortcut (or what to do if you forgot the formulas for the entries of **R**). If you just know **Q** you can recover **R** by multiplying both sides of the \(\star \) equation on the previous page by the transpose \(Q^T \) of the \(Q \) matrix:

\[
\begin{bmatrix}
\vec{u}_1^T \\
\vec{u}_2^T \\
\vdots \\
\vec{u}_p^T
\end{bmatrix}
\begin{bmatrix}
\vec{w}_1 \\
\vec{w}_2 \\
\vdots \\
\vec{w}_p
\end{bmatrix} =
\begin{bmatrix}
\vec{u}_1^T \\
\vec{u}_2^T \\
\vdots \\
\vec{u}_p^T
\end{bmatrix}
\begin{bmatrix}
\vec{v}_1 \\
\vec{v}_2 \\
\vdots \\
\vec{v}_p
\end{bmatrix} \Rightarrow \begin{bmatrix}
\vec{w}_1 \\
\vec{w}_2 \\
\vdots \\
\vec{w}_p
\end{bmatrix} R = I R = R.
\]

\[
A = Q R
\]

\[Q^T A = Q^T Q R = I R = R. \]

Example) From last Friday,

\[
B = \begin{bmatrix}
1 & 0 \\
1 & 4
\end{bmatrix}, \quad O = \begin{bmatrix}
1 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{bmatrix}
\begin{bmatrix}
\begin{bmatrix}
1 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{bmatrix}
\begin{bmatrix}
w_1 \cdot u_1 \\
w_2 \cdot u_1 \\
w_1 \cdot u_2 \\
w_2 \cdot u_2
\end{bmatrix}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{bmatrix} = Q R.
\]

Exercise 1) Verify that \(R \) could have been recovered via the formula

\[Q^T A = R \]
From previous page ...

\[
\begin{bmatrix}
1 & 0 \\
1 & 4 \\
\end{bmatrix}
= \begin{bmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\end{bmatrix}
\begin{bmatrix}
\sqrt{2} & 2\sqrt{2} \\
0 & 2\sqrt{2} \\
\end{bmatrix}.
\]

Exercise 2) Verify that the \(A = QR \) factorization in this example may be further factored as

\[
\begin{bmatrix}
1 & 0 \\
1 & 4 \\
\end{bmatrix}
= \begin{bmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\end{bmatrix}
\begin{bmatrix}
\sqrt{2} & 0 \\
0 & 2\sqrt{2} \\
\end{bmatrix}
\begin{bmatrix}
1 & 2 \\
0 & 1 \\
\end{bmatrix}.
\]

- So, the transformation \(T(\mathbf{x}) = A \mathbf{x} \) is a composition of (1) an area-preserving shear, followed by (2) a diagonal scaling that increases area by a factor of \(\sqrt{2} \cdot 2\sqrt{2} = 4 \), followed by a rotation of \(\frac{\pi}{4} \), which does not effect area. Since determinants of products matrices are the products of determinants (we checked this back when we studied determinants), and area expansion factors of compositions are also the products of the area expansion factors, the generalization of this example explains why the determinant of \(A \) (or its absolute value in general) coincides with the area expansion factor, in the \(2 \times 2 \) case. You show in your homework that the only possible \(Q \) matrices in the \(2 \times 2 \) case are rotations as above, or reflections across lines through the origin. In the latter case, the determinant of \(Q \) is \(-1\), and the determinant of \(A \) is negative.
Example from last Friday.

\[
B = \begin{bmatrix}
1 & 0 & 1 \\
1 & 4 & -2 \\
0 & 0 & 3
\end{bmatrix}
\quad O = \begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 1
\end{bmatrix}
\]

Exercise 3a Find the \(A = QR \) factorization based on the data above, for

\[
A = \begin{bmatrix}
1 & 0 & 1 \\
1 & 4 & -2 \\
0 & 0 & 3
\end{bmatrix}
\]

solution \(A = \begin{bmatrix}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 \\
\frac{-1}{\sqrt{2}} & \frac{-3}{\sqrt{2}} & 1
\end{bmatrix}
\begin{bmatrix}
\sqrt{2} & 2\sqrt{2} & -\frac{1}{\sqrt{2}} \\
0 & 2\sqrt{2} & -\frac{3}{\sqrt{2}} \\
0 & 0 & 3
\end{bmatrix}
\]

Exercise 3b Further factor \(R \) into a diagonal matrix times a volume-preserving shear and interpret the transformation \(T(x) = Ax \) as a composition of (1) a volume preserving shear, followed by (2) a coordinate scaling that increases volume by a factor of 12, followed by a rotation about the \(x_3 \) axis in \(\mathbb{R}^3 \), which preserves volume. The generalization of this example explains why the determinant of \(A \) (or its absolute value in general) is the volume expansion factor for the transformation \(T(x) = Ax \).
Definition. A square $n \times n$ matrix Q is called orthogonal if its columns are ortho-normal. (You can read more about orthogonal matrices at e.g. Wikipedia.)

Theorem. Let Q be an orthogonal matrix. Then

a) $Q^{-1} = Q^T$.

b) The rows of Q are also ortho-normal.

c) the transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ given by

\[T(x) = Qx \]

preserves dot products and magnitudes, (so also volumes, since cubes generated by perpendicular vectors will be transformed into equal-volume cubes). In other words, for all $x, y \in \mathbb{R}^n$,

\[T(x) \cdot T(y) = x \cdot y \]

\[||T(x)|| = ||x||. \]

d) The only matrix transformations $T : \mathbb{R}^n \to \mathbb{R}^n$ that preserve dot products are orthogonal transformations. (These transformations are often referred to as isometries.)
Tues Apr 10
 • 6.5 Least squares solutions, and projection revisited.

Announcements:

Warm-up Exercise:
Least squares solutions, section 6.5

In trying to fit experimental data to a linear model you must often find a "solution" to

\[A \mathbf{x} = \mathbf{b} \]

where no exact solution actually exists. Mathematically speaking, the issue is that \(\mathbf{b} \) is not in the range of the transformation

\[T(\mathbf{x}) = A \mathbf{x}, \]

i.e.

\[\mathbf{x} \notin \text{Range } T = \text{Col } A. \]

In such a case, the least squares solution(s) \(\hat{\mathbf{x}} \) solve(s)

\[A \hat{\mathbf{x}} = \text{proj}_{\text{Col } A} \mathbf{b}. \]

Thus, for the least squares solution(s), \(A \hat{\mathbf{x}} \) is as close to \(\mathbf{b} \) as possible. Note that there will be a unique least squares solution \(\hat{\mathbf{x}} \) if and only if \(\text{Nul } A = \{ \mathbf{0} \} \), i.e. if and only if the columns of \(A \) are linearly independent. (Recall, any two solutions to the same nonhomogeneous matrix equation differ by a solution to the homogeneous equation.)
Exercise 1 Find the least squares solution to
\[
\begin{bmatrix}
1 & 2 \\
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}
=
\begin{bmatrix}
3 \\
3 \\
3
\end{bmatrix}.
\]

Note that the implicit equation of the plane spanned by the two columns of \(A \) is
\[-y_1 + 2y_2 + y_3 = 0.\]
You know two ways to find that implicit equation (!)at least it's easy to check that the the two column vectors satisfy it. Since \([3 \ 3 \ 3]^T\) does not satisfy the implicit equation, there is no exact solution to this problem. If you wish, it could be instructive review the two ways.

You may use the Gram-Schmidt ortho-normal basis for \(\text{Col } A \), namely
\[
O = \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \right\}.
\]

Solution:
There's actually a smart way to find the least squares solutions that doesn't require an orthonormal basis for \(\text{Col} \ A \). And as a result, it turns out that one can also compute projections onto a subspace without first constructing an orthonormal basis for the subspace!!! Consider the following chain of equivalent conditions on \(\mathbf{x} \):

\[
A \mathbf{x} = \text{proj}_{\text{Col} \ A} \mathbf{b}
\]

\[
b - A \mathbf{x} \in (\text{Col} \ A)^\perp
\]

\[
A^T (b - A \mathbf{x}) = \mathbf{0}
\]

\[
A^T \mathbf{b} - A^T A \mathbf{x} = \mathbf{0}
\]

\[
A^T A \mathbf{x} = A^T \mathbf{b}.
\]

This last equation will always be consistent because projections exist. And if the columns of \(A \) are linearly independent the solutions to the top equation, and hence the final equation, will be unique. So the matrix \(A^T A \) will be invertible in that case. The final matrix equation is called the normal equation for least squares solutions.

Exercise 2 Re-do Exercise 1 using the normal equation, i.e find the least squares solution \(\hat{\mathbf{x}} \) to

\[
\begin{bmatrix}
1 & 2 \\
0 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} =
\begin{bmatrix}
3 \\
3 \\
3
\end{bmatrix}.
\]

And then note that \(A \hat{\mathbf{x}} \) is \(\text{proj}_{\text{Col} \ A} \mathbf{b} \), i.e. you found the projection of \([3 \ 3 \ 3]^T \) without ever finding and using an orthonormal basis!!!
Exercise 3 In the case that $A^T A$ is invertible we may take the normal equation for finding the least squares solution to $A x = b$ and find $A \hat{x} = \text{proj}_{\text{Col} A} b$ directly:

\[
A^T A \hat{x} = A^T b
\]

\[
\hat{x} = (A^T A)^{-1} A^T b
\]

\[
\text{proj}_{\text{Col} A} b = A \hat{x} = A (A^T A)^{-1} A^T b.
\]

Verify for the third time that for $W = \text{span}\begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\text{proj}_W \begin{bmatrix} 3 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ by "plug and chug".
Wed Apr 11
 • 6.6 Fitting data to "linear" models.

Announcements:

Warm-up Exercise:
Applications of least-squares to data fitting.

- Find the best line formula \(y = mx + b \) to fit \(n \) data points \(\{(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\} \). We seek \([m \ b]\) so that

\[
\begin{bmatrix}
y_1 \\
y_2 \\
y_3 \\
\vdots \\
y_n
\end{bmatrix} = \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\vdots \\
x_n
\end{bmatrix} m + \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} b.
\]

In matrix form, find \([m \ b]\) so that

\[
\begin{bmatrix}
x_1 & 1 \\
x_2 & 1 \\
x_3 & 1 \\
\vdots & \vdots \\
x_n & 1
\end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix}.
\]

There is no exact solution unless all the data points are actually on a single line!

Least squares solution:

\[
A^T A \begin{bmatrix} m \\ b \end{bmatrix} = A^T y.
\]
As long as the columns of A are linearly independent (i.e. at least two different values for x_j) there is a unique solution $[m, b]^T$. Furthermore, you are actually solving

$$A \mathbf{x} = \text{proj}_W \mathbf{y}$$

where

$$W = \text{span} \left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \right\},$$

so

$$\left\| \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} - m \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} - b \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \right\|^2,$$

is as small as possible. In other words, you've minimized the sum of the squared vertical deviations from points on the line to the data points,

$$\sum_{i=1}^{n} \| y_i - mx_i - b_i \|^2.$$

Exercise 1 Find the least squares line fit for the 4 data points \{(-1, 0), (0, 1), (1, 1), (2, 0)\}. Sketch.
Example 2 Find the best quadratic fit to the same four data points. This is still a "linear" model!! In other words, we're looking for the best quadratic function

\[p(x) = c_0 + c_1 x + c_2 x^2 \]

to fit to the four data points

\[\{(-1, 0), (0, 1), (1, 1), (2, 0) \}\].

We want to solve

\[
\begin{bmatrix}
1 \\
1 \\
\vdots \\
1
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2
\end{bmatrix}
+ \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix}
\begin{bmatrix}
c_0 x_1 \\
c_1 x_1 \\
c_2 x_1^2 \\
\vdots \\
c_0 x_n \\
c_1 x_n \\
c_2 x_n^2
\end{bmatrix}
= \begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_n
\end{bmatrix}.
\]

For our example this is the system

\[
\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
1 \\
2
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2
\end{bmatrix}
= \begin{bmatrix}
0 \\
1 \\
1 \\
0
\end{bmatrix}.
\]

I used technology (Maple, with which I write these notes), and the least squares normal equation , see next page...

\[A^T A \mathbf{c} = A^T \mathbf{b}. \]
\[\text{with(LinearAlgebra)}: \]
\[
C := \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} : b := \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}:
\]
\[
c := (\text{Transpose}(C).C)^{-1}.\text{Transpose}(C).b;
\]
\[
c := \begin{bmatrix} 1 \\ 1/2 \\ -1/2 \end{bmatrix}
\]

\[\text{with(plots)}: \]
\[
\text{plot1} := \text{plot}(1 + .5 \cdot t - .5 \cdot t^2, t = -1.5 .. 2.5, \text{color} = \text{black}) : \\
\text{plot2} := \text{pointplot}([[-1,0],[0,1],[1,1],[2,0]], \text{color} = \text{red}, \text{symbol} = \text{circle}, \text{symbolsize} = 18) : \\
\text{display}([\text{plot1}, \text{plot2}], \text{title} = \text{'oops!'});
\]

\[\text{oops!} \]
Fri Apr 13
 • 6.7-6.8 Introduction to inner product spaces.

Announcements:

Warm-up Exercise:
Flavor chart of dot product development in \mathbb{R}^n

\[\mathbf{x} \cdot \mathbf{y} := \sum_{i=1}^{n} x_i y_i \]

\[\text{algebra} \]

a) $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x}$ (symmetry)
b) $\mathbf{x} \cdot (\mathbf{y} + \mathbf{z}) = \mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{z}$ (linearity in each factor)
c) $\mathbf{x} \cdot \mathbf{x} \geq 0; \quad \mathbf{x} \cdot \mathbf{0} = 0$ (non-negative, $\mathbf{0} = \mathbf{0}$)

From algebra...

- magnitude (norm)
- orthogonal
- Pythagorean Theorem
- orthnormal basis for $W \subset \mathbb{R}^n$
- Gram-Schmidt algorithm
- projection onto W
- $\mathbb{R}^n = W \oplus W^\perp$
 - i.e., $\mathbf{x} = \text{proj}_W \mathbf{x} + \frac{1}{\mathbf{y}}$, uniquely $\mathbf{y} \in W$ $\mathbf{y} \in W^\perp$

- nearest point to $\mathbf{b} \in \mathbb{R}^n$ in W
 - is $\text{proj}_W \mathbf{b}$

- least squares solutions to $A\mathbf{x} = \mathbf{b}$

An inner product space is a (real scalar) vector space V together with an inner product $\langle \cdot, \cdot \rangle$ which gives a real number for each pair of vectors, s.t. the following axioms hold: $\forall \mathbf{f}, \mathbf{g}, \mathbf{h} \in V, k \in \mathbb{R}$:

a) $\langle \mathbf{f}, \mathbf{g} \rangle = \langle \mathbf{g}, \mathbf{f} \rangle$

b) $\langle \mathbf{f}, \mathbf{g} + \mathbf{h} \rangle = \langle \mathbf{f}, \mathbf{g} \rangle + \langle \mathbf{f}, \mathbf{h} \rangle$

$c) \langle \mathbf{f}, \mathbf{f} \rangle > 0; \quad \langle \mathbf{f}, \mathbf{0} \rangle = 0 \text{ iff } \mathbf{f} = \mathbf{0}$

From these algebra axioms, the entire concept chart on the left also holds, for finite dimensional subspaces W.

- Cauchy-Schwarz inequality
- triangle inequality (for estimates)
Examples of function space inner products:

\[V = \{ f : [a, b] \to \mathbb{R} \text{ s.t. } f \text{ is continuous} \} := C([a, b]). \]

\[\langle f, g \rangle := \int_a^b f(t) \, dt \quad \text{(or some fixed positive multiple of this integral).} \]

Exercise 1 Check the algebra requirements a), b), c) for an inner product.

This inner product \(\langle f, g \rangle \) is not so different from the \(\mathbb{R}^n \) dot product if you think of Riemann sums: Let

\[\Delta t = \frac{b - a}{n}; \quad t_j = a + j \Delta t, j = 1, 2, \ldots n. \]

Then

\[\langle f, g \rangle = \int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{j=1}^{n} f(t_j) g(t_j) \Delta t \]

\[= \lim_{n \to \infty} \left(\begin{array}{c|c}
\begin{array}{c}
 f(t_1) \\
 f(t_2) \\
 \vdots \\
 f(t_n)
\end{array} & \begin{array}{c}
 g(t_1) \\
 g(t_2) \\
 \vdots \\
 g(t_n)
\end{array}
\end{array} \right) \Delta t \]

\[= \lim_{n \to \infty} \left(\begin{array}{c|c|c}
(\Delta t)_{11} & (\Delta t)_{12} & \cdots \\
(\Delta t)_{21} & (\Delta t)_{22} & \cdots \\
\vdots & \vdots & \ddots \\
(\Delta t)_{n1} & (\Delta t)_{n2} & \cdots
\end{array} \right) \]
Prime examples:

Example For the inner product on $C[-1, 1]$ given by

$$\langle f, g \rangle := \int_{-1}^{1} f(t)g(t) \, dt$$

If one applies Gram-Schmidt to the set $\{1, t, t^2, t^3, \ldots \}$ one creates the (normalized) Legendre polynomials which have an interesting entry at Wikipedia. Projecting a continuous function f onto

$$W_n = \text{span}\{1, t, t^2, \ldots t^n\}$$

will create polynomial approximations, that improve in the sense that

$$\lim_{n \to \infty} \left\| f - \text{proj}_{W_n} f \right\|^2 = 0.$$
Example for the inner product on $C[-\pi, \pi]$ given by

$$\langle f, g \rangle := \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \, dt$$

The infinite set of functions

$$\left\{ \frac{1}{\sqrt{2}}, \cos(t), \sin(t), \cos(2t), \sin(2t), \ldots, \sin(nt), \cos(nt), \ldots \right\}$$

is already orthonormal! Thus begins the subject of Fourier Series. (See Wikipedia.)

To show the ortho-normality properties one applies the following trig identities, which follow from the addition angle formulas:

$$\cos(m t) \cos(n t) = \frac{1}{2} [\cos((m + n)t) + \cos((m - n)t)]$$

$$\cos^2(n t) = \frac{1}{2} [\cos(2 nt) + 1]$$

$$\sin(m t) \sin(n t) = \frac{1}{2} [-\cos((m + n)t) + \cos((m - n)t)]$$

$$\sin^2(n t) = \frac{1}{2} [-\cos(2 nt) + 1]$$

$$\cos(m t) \sin(n t) = \frac{1}{2} [\sin((m + n)t) + \sin((m - n)t)]$$

Exercise verify how ortho-normality follows from these identities.
Let \(V_n := \text{span}\left\{ \frac{1}{\sqrt{2}}, \cos(t), \sin(t), \cos(2t), \sin(2t), \ldots, \cos(nt), \sin(nt) \right\} \) be the \(2n + 1\)
dimensional subspace spanned by the first \(2n + 1\) of these functions. A deep theorem says that if \(f \in C(-\pi, \pi)\) (actually, \(f \) only needs to be piecewise continous), then

\[
\lim_{n \to \infty} \| f - \text{proj}_n f \| = 0.
\]

Because we have an orthonormal basis for \(V_n \) the projection formula is easy to write down:

\[
\text{proj}_n f = \left(f, \frac{1}{\sqrt{2}} \right) \left(\frac{1}{\sqrt{2}} \right) + (f, \cos(t)) \cos(t) + (f, \sin(t)) \sin(t) + \ldots + (f, \cos(nt)) \cos(nt) + (f, \sin(nt)) \sin(nt).
\]

We write

\[
a_0 = \langle f, 1 \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \, dt
\]

\[
a_k = \langle f, \cos(kt) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(kt) \, dt
\]

\[
b_k = \langle f, \sin(kt) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(kt) \, dt.
\]

Then

\[
\text{proj}_n f = \frac{a_0}{2} + \sum_{k=1}^{n} a_k \cos(kt) + \sum_{k=1}^{n} b_k \sin(kt).
\]

The infinite series converges to \(f(t) \) pointwise at places where \(f \) is differentiable, and to the average of right and left hand limits at jump discontinuities, so we also often consider the infinite Fourier series

\[
f(t) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kt) + \sum_{k=1}^{\infty} b_k \sin(kt).
\]
\[f(t) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(k t) + \sum_{k=1}^{\infty} b_k \sin(k t). \]

\[a_0 = \langle f, 1 \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \, dt \quad a_k = \langle f, \cos(k t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(k t) \, dt \]

\[b_k = \langle f, \sin(k t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(k t) \, dt. \]

Exercise: Define \(f(t) = t \), on the interval \(-\pi < t < \pi\). Show

\[t \sim 2 \sum_{k=1}^{\infty} \frac{(-1)^n + 1}{n} \sin(n t). \]
\[
proj_V f(t): \quad 10
\]

```plaintext
> with(plots):

plot1 := plot(t + 2 \cdot \pi - 2 \cdot \pi \cdot \text{Heaviside}(t + \pi) - 2 \cdot \pi \cdot \text{Heaviside}(t - \pi), t = -2 \cdot \pi .. 2 \cdot \pi, color = black):

plot2 := plot(2 \cdot \sum_{n=1}^{10} (-1)^n + 1 \cdot \frac{\sin(n \cdot t)}{n}, t = -2 \cdot \pi .. 2 \cdot \pi, color = red):

display({plot1, plot2}, title = 'Fourier Series!');
```

![Fourier Series Graph]