
Math 2270-004  Week 12 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  6.1-6.4 

Chapter 6 is about orthogonality and related topics.  We'll spend maybe two weeks plus a day in this 
chapter.  The ideas we develop start with the dot product, which we've been using algebraically to compute
individual entries in matrix products, but which has important geometric meaning.  By the end of the 
Chapter we will see applications to statistics,  discuss generalizations of the dot product, "inner products", 
which can apply to function vector spaces and which lie at the heart of physics applications that use 
Fourier series, and more recent applications such as image and audio compression, see e.g.

https://en.wikipedia.org/wiki/Discrete_cosine_transform
     

Mon Apr 2
       6.1-6.2   dot product, length, orthogonality, projection onto the span of a single vector.

Announcements: 

Warm-up Exercise:

 



Recall, for any two vectors v, w n , the dot product v w is the scalar computed by the definition

v w  
i = 1

n

vi wi .

We don't care if v, w are row vectors or column vectors, or one of each, for the dot product.

We've been using the dot product algebraically to compute entries of matrix products A B, since 

entryi j A B  = rowi A  colj B  = rowi A  colj B  .

The algebra for dot products is a mostly a special case of what we already know for matrices, but worth 
writing down and double-checking, so we're ready to use it in the rest of Chapters 6 and 7.

Exercise 1  Check why

1a)    dot product is commutative:         
 v w  = w v .

1b)  dot product distributes over addition:       
u v w = u w  v w  

u v w = u v  u w 

1c)  for k , 
k v  w = k v w = v  k w .

1d)  dot product distributes over linear combinations:

v  c1 w1 c2 w2 ...   ck wk = c1 v  w1   c2 v w2   ...  ck v wk . 



v w  
i = 1

n

vi wi 

1e)  

v v 0   for each v 0    (and 0 0 = 0. )

Chapter 6 is about topics related to the geometry of the dot product.  It begins now, with definitions and 
consequences that generalize what you learned for 2, 3 in your multivariable Calculus class, to n .

2)   Geometry of the dot product, stage 1.  We'll add examples with pictures as we go throught these 
definitions.

2a)   For v n  we define the length or norm or magnitude of v by

v   
i = 1

n

vi
2  = v v

1
2  .

Notice that the length of a scalar multiple of a vector is what you'd expect:

  t v  = t v t v
1
2 = t2 v  v

1
2

 =  t v  .

Also notice that v 0 unless v = 0.

2b)  The distance between points (with position vectors) P, Q is defined to be Q P   (or P Q ).



2c)  For  v, w n, we define v to be orthogonal  (or perpendicular) to w  if and only if
v  w = 0.

And in this case we write v w.

Note:  In 2 or 3 and in your multivariable calculus class, this definition was a special case of the identity

v w = v  w  cos

where  is the angle between v, w.  (Because cos = 0 when =
2

.  ) That identity followed from the 

law of cosines, although you probably don't recall the details.  In this class we'll actually use the identity  
above to define angles between vectors, in n. (And in about two weeks, we can use it to define angles 
between functions, in inner product function spaces.) 

2d)  The n reason for defining orthogonality as in 2c is that the Pythagorean Theorem holds for the 
triangle with displacement vectors  v, w and hypotenuse v w if and only if v w = 0.    Check!



2e)   A vector u n is called a unit vector if and only if  u = 1.  

2f)  If v n  then the unit vector in the direction of v is given by 

u =
1
v v.  

2g)  Projection onto a line.  Let v n be a non-zero vector, let L = span v  be a line through the origin.  
Then for any x n the projection of x onto L is defined by the formula

projL x  x u  u     

for u the unit vector in the direction of v, u =
1
v v.   Equivalently

projL x  
x v  
v 2 v .

Then projLx is the (position vector of) nearest point on L to (the point with position vector)  x .   To check 
why this is true use the diagram below.   Show that z x x u u is perpendicular to u, so to any 
vector in span u .  Then use the Pythagorean theorem to prove the claim.



2h)  Refer to the same diagram as in 2g, which is an n picture.  Using the Pythagorean triangle with 
edges x u u, z, x we have

x u u 2  z 2 =  x 2.

Define the angle  between v and w the same way we would in 2, namely

cos = 
x u  
x .

Notice that because of the Pythagorean identity above, 1 cos  1 , with cos = 1 if and only if
x u u = x   and cos = 1 if and only if x u u = x .  So there is a unique  with 0  for 

whic the cos  equation can hold.  Substituting u =
v
v

 gives the familiar formulas that you learned in 

multivariable Calculus for 2, 3, which now holds in n.

cos =
x v

v  

x =  
x v  
x v , i.e.

x v  = x v  cos   



3)  Summary exercise    In 2, let L = span
2

1
.  Find projL

3

4
.   Illustrate.  Verify the Pythagorean 

Theorem for projL
3

4
, "z"  and hypotenuse 

3

4
.  



Tues Apr 3
         6.1-6.2  Orthogonal complements to subspaces, and the four fundamental subspace theorem 
revisited.

Announcements: 

Warm-up Exercise:



Orthogonal complements, and the four subspaces associated with a matrix transformation, revisited more 
carefully than our first time through.

Let W n be a subspace of dimension 1  p n.  The orthogonal complement to W is the collection 
of all vectors perpendicular to every vector in W.  We write the orthogonal complement to W as W , and 
say "W perp".  Let  B  = w1, w2, ... wp  be a basis for W.  Let v W .   This means

c1w1 
 c2 w2  ... cp wp  v = 0 

for all linear combinations of the spanning vectors. Since the dot product distributes over linear 
combinations, the identity above expands as 

c1 w1 v c2 w2 v   ... cp wp v  = 0
for all possible weights.  This is true if and only if

w1 v = w2 v = ... = wp v = 0.

In other words, v  Nul A where A is the m n matrix having the spanning vectors as rows:

 A v = 

     w1
T      

w2
T

:

wp
T

v1

v2

:

vn

 =  0.

So
W = Nul A.

Exercise 1  Find W  for W = span

1

1

3
,  

1

0

2
.



Theorem (fill in details).

1a)  Let W n be a subspace with dim W = p,  1  p n.  Then dim W = n p, so 
dim W dim W  = n  

Hint:  Use reduced row echelon form ideas.

1b)  W  W  = 0

Hint:  Let x W  W .  Compute x  x.

1c)   W  = W.

Hint:  Show W  W .   Then count dimensions.

1d)  Let   B  = w1, w2, ... wp  be a basis for W  and  C = z1, z2, ... z n p  be a basis for W .   Then 
their union, B C ,  is a basis for n.

Hint:  Show B C  is linearly independent.



Remark:  From the discussion above, and for any m n matrix A of arbitrary rank p,  we can deduce from 
the discussion above that Row A  = Nul A;  so Nul A  = Row A; from our previous work we know
that dim Row A  = p, dim Nul A  = n p.  This decomposes the domain of the linear transformation 
T : n m,

T x   A x .

By the same reasoning applied to the transpose transformation from m n, the codomain of T 
decomposes into Col A = Row AT and (Col A = Nul AT, with dim Col A = p  and 
dim Nul AT  = m p.    In other words, we have justified the diagram we really only waved our hands 
at back in Chapter 4, except for transformations from 2 2.



Exercise 2)  In Exercise 1 with W = span

1

1

3
,  

1

0

2
, we showed W = span 

2

5

1
.   Compute  

W  as  Nul 2 5 1  and verify that it recovers W (but with a different basis).



Wed Apr 4
         6.2-6.3  very good bases revisited:  orthogonal and orthonormal bases.  Projection onto multi-
dimensional subspaces.

Announcements: 

Warm-up Exercise:



Definition:  The set u1, u2, ... , up
n is called orthonormal if and only if
ui ui = 1,  i = 1, 2, ...p 
ui uj = 0,      i j.

So this is a set of unit vectors that are mutually orthogonal.   It turns out that they make very good bases 
for p dimensional subspaces W.

Examples  you know already:

1)  The standard basis e1, e2, ..., en n, or any subset of the standard basis vectors.

2)  Rotated bases in 2.    u1, u2  = 
cos 

sin 
,  

sin 

cos 
.  

Theorem  (why orthonormal sets are very good bases):  Let B = u1, u2, ... , up
n be orthonormal.   

Let W = span u1, u2, ... , up .  Then

a)  u1, u2, ... , up  is linearly independent, so a basis for W.

b)  For w W,   the coordinate vector w B = 

u1 w

u2 w

:

up w

 is directly computable.  In other words,

w = u1 w u1  u2 w u2  ...  up w up



c)  Let x n.  Then there is a unique nearest point to x in W, which we call projW x, ("the projection of 
x onto W.")   The formula for this projection is given by

projW x = u1 x u1  u2 x u2  ...  up x up .

(As should be the case, projection onto W leaves elements of W fixed.)

Proof:  We will use the Pythagorean Theorem to show that the formula above for projW x yields the 
nearest point in W to x :

Define
z = x projW x   

z = x  u1 x u1  u2 x u2  ...  up x up.
Then for j = 1, 2, ... p, 

z uj = x uj   x uj = 0 .

So z  W, i.e.
z  t1 u1 t2 u2  ... tp up  = 0 

for all choices of the weight vector t .

Let w  W.  Then

x w 2 = x projWx   projWx w
2 .

Since x projWx = z and since  projWx w W, we have the Pythagorean Theorem

x w 2 =  x projWx 
2  projWx w 2 

x w 2 =  z 2 projWx w 2 . 

So x w 2 is always at least  z 2, with equality if and only if w = projW x.  
QED



Exercise 1  
1a)  Check that the set 

B = 
1
3

2

2

1
,

1
3

1

2

2
,

1
3

2

1

2
 

is an orthonormal basis for 3.

1b)  For x = 

1

2

3
  find the coordinate vector  x B  and check your answer.

solution x B = 

3

1

2
 



Exercise 2  Consider the plane from Tuesday

W = span

1

1

3
,  

1

0

2
 

which is also given implicitly as a nullspace, 

W = Nul 2 5 1 .

2a)  Verify that 

B = 
1

5

1

0

2
,  

1

6

2

1

1
 

is an ortho-normal basis for W.

2b)    Find projW x  for x =

7

3

1
.  Then verify that  z = x projW x  is perpendicular to W.

solution projW x = 

5

2

0
 



Remark:  A basis v1, v2, ... , vp n is called orthogonal if the the vectors in the set are mutually 
perpendicular, but not necessarily normalized to unit length.  One can construct an orthonormal basis from 
that set by normalizing, namely

u1, u2, ... , up = 
v1
v1

, 
v2
v2

, ... , 
vp
vp

n .

One can avoid square roots if one uses the original orthogonal matrix rather than the ortho-normal one.  
This is the approach the text prefers.  For example, for orthogonal bases, the very good basis theorem 
reads

Theorem  (why orthogonal bases are very good bases):  Let B = v1, v2, ... , vp n be orthogonal.   Let
W = span v1, v2, ... , vp .  Then

a)  v1, v2, ... , vp  is linearly independent, so a basis for W.

b)  For w W,   
w = u1 w u1  u2 w u2  ...  up w up 

w = 
v1 w

 v1
2 v1  

v2 w

 v2
2  v2  ...  

vp w

 vp
2  vp 

c)  Let x n.  Then there is a unique nearest point to x in W, which we call projW x, ("the projection of 
x onto W.")   The formula for this projection is given by

projW x = u1 x u1  u2 x u2  ...  up x up .

projW x =  
v1 x

 v1
2 v1  

v2 x

 v2
2  v2  ...  

vp x

 vp
2  vp.

You can see how that would have played out in the previous exercise.



  Name________________________Student I.D.___________________
Math 2270-004      Quiz  Week 12   April 4, 2018               

1a)  Let L = span
3

1
 in 2.   Let x =

0

5
.  Compute projL x .

(6 points)

1b)  Use the dot product to verify that the vector z from projL x to x is perpendicular to 
3

1
.

(2 points)

1c)  Make a sketch which illustrates your work in parts a,b.  It should include the line L, the points with 
position vectors x, projL x, and the vector z from projL x to x.

(2 points)



Fri Apr 6
         6.3-6.4  Gram-Schmidt process for constructing ortho-normal (or orthogonal) bases.  The 
A = Q R matrix factorization.

Announcements: 

Warm-up Exercise:



Start with a basis B  = w1, w2, ... wp  for a subspace W of n.   How can you convert it into an 
orthonormal basis?  Here's how!  The inductive process is called Gram-Schmidt orthogonalization.

Let W1 = span w1 .  Define  u1 = 
w1

w1
.  Then u1  is an orthonormal basis for W1.

Let W2 = span w1, w2 .

     Let z2 = w2 projW
1
w2,   so z2 u1.

     Define u2 = 
z2
z2

.   So u1, u2  is an orthonormal basis for W2.



Let W3 = span w1, w2, w3 .

     Let  z3 = w3 projW
2
w3,   so z3  W2.

     Define u3 = 
z3
z3

.  Then u1, u2, u3   is an orthonormal basis for W3.

Inductively,

Let  Wj = span w1, w2, ... wj  = span u1, u2,  ...  uj 1, wj .

     Let zj = wj  projW
j 1

 wj  = wj  wj u1 u1   wj u2 u2    ... wj uj 1 uj 1    .

     Define  uj = 
zj
zj

.   Then u1, u2, ... uj   is an orthonormal basis for Wj .

Continue up to j = p.



Exercise 1  Perform Gram-Schmidt orthogonalization on the basis 

B = 
1

1
,  

0

4
.

Sketch what you're doing, as you do it.



Exercise 2  Perform Gram-Schmidt on the basis

B =

1

1

0
,

0

4

0
,

1

2

3
.

This will proceed as in Exercise 1 until the third step, i.e.

u1 =
1

2

1

1

0
,  u2 =

1

2

1

1

0
  



We may have time to get to the matrix factorization A = Q R that follows from the Gram-Schmidt 
algorithm.  But I didn't have time to make typed notes, so here are some old hand-written ones.  I was 
using v's for the basis vectors instead of w 's.   We'll cover this carefully on Monday, probably with fresh 
notes.




