
Math 2270-004  Week 11 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  5.4-5.6  

Mon Mar 26
       5.4  matrices for linear transformations as a general framework to understand change of bases, 
diagonalization, and similar matrices.
     

Announcements: 

Warm-up Exercise:

 



Monday Review and look ahead:

We've been studying linear transformations T : V W between vector spaces, which include matrix 
transformations T : n m given as T x = A x.

We've been studying how coordinates change when we change bases in n .

The last thing we studied in depth before the midterm was eigenvectors and eigenvalues for square 
matrices A, and the notion of diagonalizability, which we understood in an algebraic sense.

On the Wednesday before the midterm we introduced section 5.4, about how linear transformations  
T : V W are associated with matrix transformations from n m, once we choose bases for V and W.   
We didn't have time to explain how this general framework is connected to all of our previous change of 
coordinates discussion, to matrix diagonalizability, and to the more general notion of similar matrices. 
That's what we'll do today.  

Tomorrow we'll study section 5.5 on complex eigenvalues and eigenvectors.  To understand the geometry 
of matrix transformations with complex eigendata we'll use "similar matrices" notions from today, to see 
that (in the 2 2 case), such matrices are similar to "rotation-dilations".  You saw a hint of this on a food 
for thought problem before break, if you dared.

Wednesday we'll start section 5.6 on discrete dynamical systems, and we'll continue that discussion into 
Friday with google page rank.  These section 5.6 topics are more expository than comprehensive, and for 
fun.  There will be some follow-up homework problems.



Recall, if we have a linear transformation T : V W  and bases  B = b1, b2, ... bn  in V,  
C = c1, c2, ... cm  in W, then the matrix of T with respect to these two bases transforms the B coordinates 
of vectors x V to the C coordinates of T x  in a straightforward way:

Exercise 1)  Explain why the columns of the matrix M have to be the C coordinate vectors of T applied the 
B basis vectors.  Do this two ways:  (1) using the chart.  AND (2) seeing what must happen when you 
multiply M by the standard basis vectors.  This should help you remember in case you get confused.



Exercise 2)  Fill in the matrix M for changing coordinates in a general vector space.  We focused on 
changing coordinates in n in section 4.7, which is a special case of this when V = n itself.  The text also 
discussed the more general context below, in that section. 

Example:  On the midterm:  Let B = 
1

2
,  

0

1
  and C = 

1

1
,  

2

3
 be two bases for V = 2.   

Find the change of coordinates matrix  PC B :

Solution:
  PC B = b1 C  b2 C   

Since 
1 2 1 0

1 3 2 1
   reduces to  

1 0 1 2

0 1 1 1
  the answer was   PC B = 

1 2

1 1
 .

(Which, as the diagram indicates, could also have been computed as 

PC B = PC E PE B  = 
1 2

1 3

1
1 0

2 1
  .)



Exercise 4)  What if a matrix A is diagonalizable?  What is the matrix of T x = A x with respect to the 
eigenbasis?  How does this connect to our matrix identities for diagonalization?  Fill in the matrix M 
below, and then compute another way to express it, as a triple product using the diagram.

Example, from the week before break:

A =
3 2

1 2
           E

= 4
 = span

2

1
        E

= 1
= span

1

1
    B = 

2

1
, 

1

1
  

Write the various matrices corresponding to the diagram above.



Even if the matrix A is not diagonalizable, there may be a better basis to help understand the transformation
T x = A x.   The diagram on the previous page didn't require that B be a basis of eigenvectors....maybe it 
was just a "better" basis than the standard basis, to understand T.

Exercise 5   (If we have time - this one is not essential.)   Try to pick a better basis to understand the matrix
transformation T x = C x, even though the matrix C is not diagonalizable.  Compute M = P 1A P  or 
compute M directly, to see if it really is a "better" matrix.

C =
4 4

1 0
  





Tues Mar 27
         5.5  Complex eigenvalues and eigenvectors

Announcements: 

Warm-up Exercise:



We'll focus on 2 2 matrices, for simplicity.   In this case it will turn out that a matrix with real entries and
complex eigenvalues is always similar to a rotation-dilation matrix.

Definition  A matrix of the form A =
a b

b a
 is called a rotation-dilation matrix, because for 

r = a2 b2  we can rewrite A as

A = r  

a
r

b
r

b
r

a
r

 =  r 
cos sin

sin cos
 .

So the transformation T x = A x  rotates vectors by an angle  and then scales them by a factor of r.  (So 
A2 rotates by an angle 2  and scales by r2;  A3 rotates by an angle 3  and scales by r3, etc.  

Exercise 1   Draw the transformation picture for

T
x1

x2
= 

1 1

1 1

x1

x2

and interpret this transformation as a rotation-dilation.



Exercise 2)  What are the eigenvalues of a rotation-dilation matrix A =
a b

b a
 ?

It is possible for a matrix A with real entries to be diagonalizable if one allows complex scalars and vectors,
even if it's not diagonalizable with real eigenvalues and eigenvectors.  You saw an example of that on a 
food for thought problem, if you weren't afraid.  We'll use a matrix today that we'll use later as well, in 
section 5.6, to study an interesting discrete dynamical system.  This matrix is not a rotation-dilation matrix, 
but it is similar to one, and that fact will help us understand the discrete dynamical system.

Exercise 3)  Let

B =
.9 .4

.1 .9
Find the (complex) eigenvalues and eigenvectors for B.





General facts we saw illustrated in the example, about complex eigenvalues and eigenvectors:  Let A be a 
matrix with real entries, and let 

A v =  v  

with = a  b i, v = u i w complex,  (a, b , u, w n .  Then we write

Re  = a,   Im  = b

Re v = u,      Im v = w.

So, the equation A v =  v expands as

A u  i w  = a b i u i w .

It will always be true then that the conjugate   =  a  b i  is also an eigenvalue, and the conjugate vector  
v = u i w  will be a corresponding eigenvector, because it will satisfy

A u  i w  = a b i u i w  

Exercise 4  Verify that if the first eigenvector equation holds, then

A u = a u  b w 
A w = b u  a w 

Then check that these equalities automatically make the second conjugate eigenvector equation true as well.



Theorem   Let  A be a real 2 2 matrix with complex eigenvalues.  Then A is similar to a rotation-dilation 
matrix.

proof:  Let a complex eigenvalue and eigenvector be given by  = a  b i, v = u i w complex,  (
a, b , u, w n   Choose

P =  Re v    Im v  = u  w   

(One can check that u, w  is automatically independent.)  Then, using the equations of Exercise 4, we 
mimic what we did for diagonalizable matrices...

A u  w   = a u  b w, b u  a w   

=  u  w   
a b

b a
  .

A P = P 
a b

b a
  

P 1 A P =  
a b

b a
.

(The matrix on the right is a rotation-dilation matrix  ... nobody ever said what the sign of b was.   :-) )



It's a mess, but we can carry out the procedure of the theorem,  for the matrix B in exercise 3, 

B =
.9 .4

.1 .9

using = .9 .2 i,  v = 
2 i

1
= 

0

1
i

2

0
   , one gets

P =  Re v    Im v =
0 2

1 0
,               P 1 =

1
2

0 2

1 0
 

P 1B P = 
1
2

0 2

1 0
 

.9 .4

.1 .9

0 2

1 0
 

P 1B P =
.9 .2

.2 .9
 = .85

.9

.85

.2

.85

.2

.85

.9

.85

  

P 1B P = r 
cos sin

sin cos
 .

for r = .85 .92   ,  = arctan
2
9

.22 radians.



Wed Mar 28
         5.6  Discrete dynamical systems

Announcements: 

Warm-up Exercise:



what is a discrete dynamical system, with constant transition matrix?

Example:   (See text, page 304).  A predator-prey system:  "Deep in the redwood forests of California, 
dusky-footed wood rats povide up to 80 % of the diet for the spotted owl, the main predator of the wood 
rat..."   This model is a simplified version of how the owls and wood rats interact:  Denote the owl and 
wood rat populations at time k months by

xk = 
Ok

Rk
,

where Ok is the number of owls in the region studied, and Rk is the number of rats (measured in the 
thousands).  Suppose

Ok 1 = .5 Ok .4 Rk
Rk 1 = p Ok  1.1 Rk 

where p is a positive parameter (predation constant) to be specified.  The .5  Ok in the first equation says 
that with no wood rats for food, only half the owls will survive each month, while the 1.1 Rk says that with
no owls as predators, the rat population will grow by 10 % each month.  If the rats are plentiful, the .4 Rk 
will tend to make the owl population rise, while the negative term p Ok measures the deaths of rats due to
predation by owls.  (In fact, 1000 p is the average number of rats eaten by one owl in one month.)  
Determine the evolution of this system when the predation parameter p is .104.

solution  We see that

Ok 1

Rk 1
=  

.5 .4

.104 1.1

Ok

Rk
.

Writing 

xk =
Ok

Rk
,  A =

.5 .4

.104 1.1
  

we see
xk = Ak x0

where x0 =
O0

R0
  are the owl and rat populations at the start.  This is a dynamical system because it 

involves quantities that are changing over time.  It is a discrete dynamical system because we are letting 



time change by discrete amounts (of one month).  If we allowed time to vary continuously we would get 
statements about derivatives and would be studying differential equations instead.  (See Math 2280 or 
2250.)  A is the constant transition matrix.

The way to understand this problem is to use the fact that A is diagonalizable:

(An exact eigenvector for 1 = 1.02  is actually v1 = 
10

13
.)   

Exercise 1  Describe the long term behavior of the solutions xk to this problem.   Begin by writing x0 in 
terms of the eigenbasis.  Then apply A repeatedly.  (We could do this in terms of diagonalization and the 
matrix of A with respect to the eigenbasis, but that would be unneccesarily confusing.)

x0 = c1 v1   c2 v2 

= c1

10

13
 c2

5

1
.



Exercise 2  Suppose  we have a general discrete dynamical system
xk = Ak x0

and that the matrix A is diagonalizable (over the real numbers, or even over the complex numbers).  What 
can you say about the long term behavior of solutions, depending on the absolute value of the eigenvalues 
of A?







Example:  From the algebra yesterday, and after a fair amount of work,  For the dynamical system

gk 1

hk 1
 =  

.9 .4

.1 .9

gk

hk

and with 
g0

h0
=  

100

0
,  one can calculate and understand the spiral picture...

gk

hk
 =

.9 .4

.1 .9

k 
100

0
 =  = .92k 100 cos k 

50 sin k 
 

 .22 radians.



yipes!  

For r = .85 .92   ,  = arctan
2
9

.22 radians.

B = r P
cos sin

sin cos
P 1 

B2 = r2 P
cos 2 sin 2 

sin 2 cos 2 
P 1

Bn = rn P 
cos n sin n 

sin n cos n 
P 1 

Bn 100

0
 = .92n 

0 2

1 0
 

cos n sin n 

sin n cos n 
1
2

0 2

1 0

100

0
  

.92n 0 2

1 0
 

cos n sin n 

sin n cos n 

0

50
 

= .92n 0 2

1 0

50 sin n

50 cos n

= .92n 100 cos n

50 sin n



Fri Mar 30
         5.6  Discrete dynamical systems:  Google page rank, using some notes I wrote a while ago.  I'll 
probably also bring a handout to class.  There are other documents on the internet about this subject.  One 
that a lot of people like is called "THE $25,000,000,000∗ EIGENVECTOR THE LINEAR ALGEBRA 
BEHIND GOOGLE", which you can google.  This topic is also related to section 4.9 of our text.

Announcements: 

Warm-up Exercise:



The Giving Game: Google Page Rank

University of Utah Teachers’ Math Circle

Nick Korevaar

March 24, 2009

Stage 1: The Game

Imagine a game in which you repeatedly distribute something desirable to your friends,
according to a fixed template. For example, maybe you’re giving away “play–doh” or pennies!
(Or it could be you’re a web site, and you’re voting for the sites you link to. Or maybe,
you’re a football team, and you’re voting for yourself, along with any teams that have beaten
you.)

Let’s play a small–sized game. Maybe there are four friends in your group, and at each
stage you split your material into equal sized lumps, and pass it along to your friends,
according to this template:

2

1 3

4

The question at the heart of the basic Google page rank algorithm is: in a voting game
like this, with billions of linked web sites and some initial vote distribution, does the way
the votes are distributed settle down in the limit? If so, sites with more limiting votes must
ultimately be receiving a lot of votes, so must be considered important by a lot of sites, or
at least by sites which themselves are receiving a lot of votes. Let’s play!

1. Decide on your initial material allocations. I recommend giving it all to one person
at the start, even though that doesn’t seem fair. If you’re using pennies, 33 is a
nice number for this template. At each stage, split your current amount into equal
portions and distribute it to your friends, according to the template above. If you have
remainder pennies, distribute them randomly. Play the game many (20?) times, and
see what ultimately happens to the amounts of material each person controls. Compare
results from different groups, with different initial allocations.

2. While you’re playing the giving game, figure out a way to model and explain this
process algebraically!

1



Stage 2: Modeling the game algebraically

The game we just played is an example of a discrete dynamical system, with constant tran-
sition matrix. Let the initial fraction of play dough distributed to the four players be given
by

x0 =

⎡

⎢

⎢

⎣

x0,1

x0,2

x0,3

x0,4

⎤

⎥

⎥

⎦

,
4
∑

i=1

x0,i = 1

Then for our game template on page 1, we get the fractions at later stages by

⎡

⎢

⎢

⎣

xk+1,1

xk+1,2

xk+1,3

xk+1,4

⎤

⎥

⎥

⎦

= xk,1

⎡

⎢

⎢

⎣

0
0.5
0.5
0

⎤

⎥

⎥

⎦

+ xk,2

⎡

⎢

⎢

⎣

0
0
1
0

⎤

⎥

⎥

⎦

+ xk,3

⎡

⎢

⎢

⎣

0
0
0
1

⎤

⎥

⎥

⎦

+ xk,4

⎡

⎢

⎢

⎣

0.5
0

0.5
0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xk+1,1

xk+1,2

xk+1,3

xk+1,4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 0 0 0.5
0.5 0 0 0
0.5 1 0 0.5
0 0 1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xk,1

xk,2

xk,3

xk,4

⎤

⎥

⎥

⎦

So in matrix form, xk = Akx0 for the transition matrix A given above.

3. Compute a large power of A. What do you notice, and how is this related to the page
1 experiment?

4. The limiting “fractions” in this problem really are fractions (and not irrational num-
bers). What are they? Is there a matrix equation you could solve to find them, for
this small problem? Hint: the limiting fractions should remain fixed when you play
the game.

5. Not all giving games have happy endings. What happens for the following templates?

(a)

2

1 3

4

2



(b)

2

1 3

4

(c)

2 5

1 3

4 6

(d)

2 5

1 3

4 6

Here’s what separates good giving–game templates, like the page 1 example, from the
bad examples 5a,b,c,d.

Definition: A square matrix S is called stochastic if all its entries are positive, and the
entries in each column add up to exactly one.

Definition: A square matrix A is almost stochastic if all its entries are non–negative, the
entries in each column add up to one, and if there is a positive power k so that Ak is
stochastic.

6. What do these definitions mean vis-à-vis play–doh distribution? Hint: if it all starts
at position j, then the inital fraction vector x0 = ej, i.e. has a 1 in position j and
zeroes elsewhere. After k steps, the material is distributed according to Akej, which is
the jth column of Ak.

3



Stage 3: Theoretical basis for Google page rank

Theorem. (Perron–Frobenius) Let A be almost stochastic. Let x0 be any “fraction vector”
i.e. all its entries are non–negative and their sum is one. Then the discrete dynamical system

xk = Akx0

has a unique limiting fraction vector z, and each entry of z is positive. Furthermore, the
matrix powers Ak converge to a limit matrix, each of whose columns are equal to z.

proof: Let A = [aij ] be almost stochastic. We know, by “conservation of play–doh”, that
if v is a fraction vector, then so is Av. As a warm–up for the full proof of the P.F. theorem,
let’s check this fact algebraically:

n
∑

i=1

(Av)i =
n
∑

i=1

n
∑

j=1

aijvj =
n
∑

j=1

n
∑

i=1

aijvj

=
n
∑

j=1

vj

(

n
∑

i=1

aij

)

=
n
∑

j=1

vj = 1

Thus as long as x0 is a fraction vector, so is each iterate ANx0.
Since A is almost stochastic, there is a power l so that S = Al is stochastic. For any

(large) N , write N = kl + r, where N/l = k with remainder r, 0 ≤ r < l. Then

ANx0 = Akl+rx0 =
(

Al
)k

Arx0 = SkArx0

As N → ∞ so does k, and there are only l choices for Arx0, 0 ≤ r ≤ l− 1. Thus if we prove
the P.F. theorem for stochastic matrices S, i.e. Sky0 has a unique limit independent of y0,
then the more general result for almost stochastic A follows.

So let S = [sij] be an n×n stochastic matrix, with each sij ≥ ε > 0. Let 1 be the matrix
for which each entry is 1. Then we may write:

B = S − ε1; S = B + ε1. (1)

Here B = [bij ] has non–negative entries, and each column of B sums to

1 − nε := µ < 1. (2)

We prove the P.F. theorem in a way which reflects your page 1 experiment: we’ll show
that whenever v and w are fraction vectors, then Sv and Sw are geometrically closer to each
other than were v and w. Precisely, our “metric” for measuring the distance “d” between
two fraction vectors is

d(v,w) :=
n
∑

i=1

|vi − wi|. (3)

Here’s the magic: if v is any fraction vector, then for the matrix 1, of ones,

(1v)i =
n
∑

j=1

1vj = 1.

4



So if v,w are both fraction vectors, then 1v = 1w. Using matrix and vector algebra, we
compute using equations (1), (2):

Sv − Sw = (B + ε1)v − (B + ε1)w (4)

= B(v −w)

So by equation (3),

d(Sv, Sw) =
n
∑

i=1

∣

∣

∣

∣

∣

n
∑

j=1

bij(vj − wj)

∣

∣

∣

∣

∣

(5)

≤
n
∑

i=1

n
∑

j=1

bij |vj − wj|

=
n
∑

j=1

|vj − wj|
n
∑

i=1

bij

= µ
n
∑

j=1

|vj − wj |

= µd(v,w)

Iterating inequality (5) yields

d(Skv, Skw) ≤ µkd(v,w). (6)

Since fraction vectors have non–negative entries which sum to 1, the greatest distance be-
tween any two fraction vectors is 2:

d(v,w) =
n
∑

i=1

|vi − wi] ≤
n
∑

i=1

vi + wi = 2

So, no matter what different initial fraction vectors experimenters begin with, after k iter-
ations the resulting fraction vectors are within 2µk of each other, and by choosing k large
enough, we can deduce the existence of, and estimate the common limit z with as much
precision as desired. Furthermore, if all initial material is allotted to node j, then the initial
fraction vector ej has a 1 in position j and zeroes elsewhere. Skej, (or ANej) is on one hand
the jth column of Sk (or AN), but on the other hand is converging to z. So each column of
the limit matrix for Sk and AN equals z. Finally, if x0 is any initial fraction vector, then
S(Skx0) = Sk+1(x0) is converging to S(z) and also to z, so S(z) = z (and Az = z). Since
the entries of z are non–negative (and sum to 1) and the entries of S are all positive, the
entries of Sz (= z) are all positive. ¨

5



Stage 4: The Google fudge factor

Sergey Brin and Larry Page realized that the world wide web is not almost stochastic.
However, in addition to realizing that the Perron–Frobenius theorem was potentially useful
for ranking URLs, they figured out a simple way to guarantee stochasticity—the “Google
fudge factor.”

Rather than using the voting matrix A described in the previous stages, they take a
combination of A with the matrix of 1s we called 1. For (Brin an Pages’ choice of) ε = .15
and n equal the number of nodes, consider the Google matrix

G = (1 − ε)A +
ε

n
1.

(See [Austin, 2008]).
If A is almost stochastic, then each column of G also sums to 1 and each entry is at least

ε/n. This G is stochastic! In other words, if you use this transition matrix everyone gets a
piece of your play–doh, but you still get to give more to your friends.

7. Consider the giving game from 5c. Its transition matrix

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 .5 0 0
.5 0 0 0 0 0
.5 1 0 .5 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

is not almost stochastic. For ε = .3 and ε/n = .05, work out the Google matrix G,
along with the limit rankings for the six sites. If you were upset that site 4 was ranked
as equal to site 3 in the game you played for stage 1, you may be happier now.

Historical notes

The Perron–Frobenius theorem had historical applications to input–output economic mod-
eling. The idea of using it for ranking seems to have originated with Joseph B. Keller, a
Stanford University emeritus mathematics professor. According to a December 2008 article
in the Stanford Math Newsletter [Keller, 2008], Professor Keller originally explained his team
ranking algorithm in the 1978 Courant Institute Christmas Lecture, and later submitted an
article to Sports Illustrated in which he used his algorithm to deduce unbiased rankings for
the National League baseball teams at the end of the 1984 season. His article was rejected.
Utah professor James Keener visited Stanford in the early 1990s, learned of Joe Keller’s idea,
and wrote a SIAM article in which he ranked football teams [Keener, 1993].

Keener’s ideas seem to have found their way into some of the current BCS college football
ranking schemes which often cause boosters a certain amount of heartburn. I know of no
claim that there is any direct path from Keller’s original insights, through Keener’s paper, to
Brin and Pages’ amazing Google success story. Still it is interesting to look back and notice

6



that the seminal idea had been floating “in the air” for a number of years before it occurred
to anyone to apply it to Internet searches.

Acknowledgement: Thanks to Jason Underdown for creating the graph diagrams and
for typesetting this document in LATEX.
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