Fri Mar 🛃

• 5.1-5.2 Eigenvectors and eigenvalues for square matrices

Eigenvalues and eigenvectors for square matrices.

To introduce the idea of eigenvalues and eigenvectors we'll first think geometrically.

<u>Example</u> Consider the matrix transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ with formula

$$T\left(\begin{bmatrix} x_1\\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 3 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 3\\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0\\ 1 \end{bmatrix} = \begin{bmatrix} 3x_1\\ x_2 \end{bmatrix}$$

Notice that for the standard basis vectors $\underline{e}_1 = \begin{bmatrix} 1, 0 \end{bmatrix}^T$, $\underline{e}_2 = \begin{bmatrix} 0, 1 \end{bmatrix}^T$

$$T(\underline{e}_1) = 3\underline{e}_1$$

$$T(\underline{e}_2) = \underline{e}_2$$

The facts that *T* is linear and that it transforms \underline{e}_1 , \underline{e}_2 by scalar multiplying them, lets us understand the geometry of this transformation completely:

$$T\left(\left[\begin{array}{c}x_{1}\\x_{2}\end{array}\right]\right) = T\left(x_{1}\underline{e}_{1} + x_{2}\underline{e}_{2}\right) = x_{1}T\left(\underline{e}_{1}\right) + x_{2}T\left(\underline{e}_{2}\right)$$
$$= x_{1}\left(3\underline{e}_{1}\right) + x_{2}\left(1\underline{e}_{2}\right) .$$

In other words, *T* stretches by a factor of 3 in the \underline{e}_1 direction, and by a factor of 1 in the \underline{e}_2 direction, transforming a square grid in the domain into a parallel rectangular grid in the image:

<u>Definition</u>: If $A_{n \times n}$ and if $A \underline{v} = \lambda \underline{v}$ for a scalar λ and a vector $\underline{v} \neq \underline{0}$ then \underline{v} is called an <u>eigenvector of A</u>, and λ is called the <u>eigenvalue</u> of \underline{v} . (In some texts the words <u>characteristic vector</u> and <u>characteristic value</u> are used as synonyms for these words.)

• In the example above, the standard basis vectors (or multiples of them) are eigenvectors, and the corresponding eigenvalues are the diagonal matrix entries. A non-diagonal matrix may still have eigenvectors and eigenvalues, and this geometric information can still be important to find. But how do you find eigenvectors and eigenvalues for non-diagonal matrices? ...

Exercise 2) Try to find eigenvectors and eigenvalues for the non-diagonal matrix, by just trying random input vectors \underline{x} and computing $A \underline{x}$.

How to find eigenvalues and eigenvectors (including eigenspaces) systematically:

If

$$A \underline{v} = \lambda \underline{v}$$

$$\Leftrightarrow A \underline{v} - \lambda \underline{v} = \underline{0}$$

$$\Leftrightarrow A \underline{v} - \lambda I \underline{v} = \underline{0}$$
where *I* is the identity matrix.
$$\Leftrightarrow (A - \lambda I) \underline{v} = \underline{0}.$$

$$As we know, this last equation can have non-zero solutions \underline{v} if and only if the matrix $(A_i - \lambda I)$ is not invertible, i.e.
$$\Leftrightarrow det(A - \lambda I) = 0.$$

$$\Rightarrow det(A - \lambda I) = 0.$$$$

 $\Leftrightarrow det(A - \lambda I) = 0$.

So, to find the eigenvalues and eigenvectors of matrix you can proceed as follows:

Compute the polynomial in λ

where *I* is the identity matrix.

invertible, i.e.

$$p(\lambda) = det(A - \lambda I) = O$$
 want nots.

If $A_{n \times n}$ then $p(\lambda)$ will be degree *n*. This polynomial is called the <u>characteristic polynomial</u> of the matrix Α.

 λ_j can be an eigenvalue for some non-zero eigenvector \underline{v} if and only if it's a root of the characteristic polynomial, i.e. $p(\lambda_j) = 0$. For each such root, the homogeneous solution space of vectors \underline{v} solving $(A - \lambda_j) v = 0$

$$(A - \lambda_j I) \underline{y} = \underline{0}$$

 λ_j . This subspace of eigenvectors will be at least one dimensional,

will be eigenvectors with eigenvalue λ_{j} since $(A - \lambda_i I)$ does not reduce to the identity and so the explicit homogeneous solutions will have free parameters. Find a basis of eigenvectors for this subspace. Follow this procedure for each eigenvalue, i.e. for each root of the characteristic polynomial.

Notation: The subspace of eigenvectors for eigenvalue λ_j is called the $\underline{\lambda}_j$ eigenspace, and we'll denote it by The basis of eigenvectors is called an <u>eigenbasis</u> for E_{λ_j} $E_{\lambda = \lambda_i}$.

Exercise 3) a) Use the systematic algorithm to find the eigenvalues and eigenbases for the non-diagonal matrix of Exercise 2.

$$A = \left[\begin{array}{cc} 3 & 2 \\ 1 & 2 \end{array} \right].$$

b) Use your work to describe the geometry of the linear transformation in terms of directions that get stretched: $(\begin{bmatrix} 1 \\ 1 \end{bmatrix}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

 $A\vec{v} = \lambda\vec{v}$

$$T\left(\left[\begin{array}{c}x_1\\x_2\end{array}\right]\right) = \left[\begin{array}{cc}3&2\\1&2\end{array}\right]\left[\begin{array}{c}x_1\\x_2\end{array}\right]$$

$$\begin{array}{c} A \vec{v} - \lambda \vec{v} = \vec{o} \\ (A - \lambda I) \vec{v} = \vec{o} \\ I \\ A - \lambda I | = 0 \end{array} \qquad (A - \lambda I | = \begin{vmatrix} 3 - \lambda & 2 \\ 1 & 2 - \lambda \end{vmatrix} = (5 - \lambda)(2 - \lambda) - 2 \\ = (5 - 5\lambda + \lambda^{2} - 2) \\ = (5 - 5\lambda + \lambda^{2} - 2) \\ = (5 - 5\lambda + \lambda^{2} - 2) \\ = (3 - 5\lambda + 4) \\ \hline = (\lambda - 1)(\lambda - 4) = 0 \\ (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{o} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \vec{v} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \begin{bmatrix} 3 - 2 \\ -1 \end{bmatrix} \vec{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \vec{v} \\ I - 2 \end{vmatrix} \qquad (A - 4I) \vec{v} = \vec{v} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \vec{v} \\ I = \vec{v} = \vec{v}$$

Exercise 4) Find the eigenvalues and eigenspace bases for

$$B := \begin{bmatrix} 4 & -2 & 1 \\ 2 & 0 & 1 \\ 2 & -2 & 3 \end{bmatrix}.$$

(i) Find the characteristic polynomial and factor it to find the eigenvalues.

(ii) for each eigenvalue, find bases for the corresponding eigenspaces.

(iii) Can you describe the transformation $T(\underline{x}) = B\underline{x}$ geometrically using the eigenbases? Does det(B) have anything to do with the geometry of this transformation?

$$p(\lambda) = -(\lambda - 2)^{2}(\lambda - 3)$$

Your solution will be related to the output below:

eigenvalues{{4,-2,1},{2,0,1},{2,-2,3}}	☆
🖾 🔟 🛱 🐙	🔛 Web Apps 🛛 Examples 🗢 Rando
Input:	
eigenvalues $\begin{pmatrix} 4 & -2 & 1 \\ 2 & 0 & 1 \\ 2 & -2 & 3 \end{pmatrix}$	
	Open code ¿
Results:	Step-by-step solution
$\lambda_1 = 3$	2
$\lambda_2 = 2$	
$\lambda_3 = 2$	
Corresponding eigenvectors:	Step-by-step solution
$v_1 = (1, 1, 1)$	
	E C
$v_2 = (-1, 0, 2)$	

Wolfram Alpha computational

In all of our examples so far, it turns out that by collecting bases from each eigenspace for the matrix $A_{n \times n}$, and putting them together, we get a basis for \mathbb{R}^n . This lets us understand the <u>geometry</u> of the transformation

$$T(\underline{x}) = A \underline{x}$$

almost as well as if A is a diagonal matrix. This is actually something that does not always happen for a matrix A. When it does happen, we say that A is <u>diagonalizable</u>. Here's an example of a matrix which is NOT diagonalizable:

Exercise 5: Find matrix eigenvalues and eigenspace basis for each eigenvalue, for

$$A = \left[\begin{array}{cc} 3 & 2 \\ 0 & 3 \end{array} \right].$$

Explain why there is no basis of \mathbb{R}^2 consisting of eigenvectors of A.