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4.7 Change of basis
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The setup: Let V' be a finite dimensional vector space, with two bases,
B = {b b, ..b }

Zp Ly o Ly
C= {21’92’ gn}

64,

How do we change from the coordinate system of the B basis to that of the C basis? If we can express the
B vectors in terms of the C vectors it's straightforward:

Example Let B = {Ql, b, }, C= { < 92} be bases for the two-dimensional vector space V. Suppose
b =4¢ +g
b, £ T84

=-6¢c, +
X
Let [v]g= . Find [»]c.
XZ <
Solution:
\ v=x Ll +x222
= [2]c =[x 4 +x,b,]- ¢
[t k]

4 -6 X
v =
[]c L1

Note that the coordinate transition matrix| P ¢ < 8 |would always given by
[[&1]c [&2]c]-

no matter what the particular coordinate vectors [ b, ]C , [ b, ]C are.



Exercise 1 Consider V= {a + bt} , the space of polynomials in 7 of degree < 1. Let C= {1, ¢} be the

"standard basis". and let B = {1 +¢1— t} Be an alternate basis
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c by using the transition matrix
to the direct method (which shoyld be just as easy in this simple case)
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1c) The transition matrix in the reverse direction must be the inverse of the original transition matrix. Find

Pg—c= (Pc—5)"
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1d) Suppose r(t) =1+ 7t Find [r]p and check your work.
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Change of coordinate transition matrices work the same in every dimension.
Let V' be a finite dimensional vector space, with two bases,

B = {LI,LQ, Ln}

C= {_1,_2, gn} .

Then for
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A special case of change of coordinates is when the vector space V'is R” itself. In that case there are two
ways to find the coordinate transition matrices. Let

B =1(b.b, -.b,)
C={er g g}
be two bases for R”.
Method 1: Let
E={e. e, ..e}

be the standard basis. As we discussed previously and as a special case of our current discussion, since
fory € R, [v]g=»

—

P@ = Pe<—s=1[b.b, ...b]

PE<—C=[£1,QQ, gn]

Since composition of matrix transformations corresponds to matrix multiplication, the transition matrix
from B to C coordinates can be computed via the standard coordinate transitéd matrices:

Pc—s=Pc—ePe—s=(Pe—c)y' Pes
— ———

Method 2: Direct method. We know

Pes = [t () [Bc] o

Consider the columns of the transition matrix as unknowns - as when we were finding the columns of
inverses matrices by a multi-augmented matrix procedure to solve 4 X= 1. In this case, and illustrating

with n = 2 for simplicity,
Pecs = [[b]c [ |-

The first column

satisfies



4 =b
(€S | ”, 1 *
and the second column
o
2] z,
satisfies
o
Co] . |~k

We solve for the two columns with a double augmented matrix reduction:

1 0fy, 2z

0 1fy, z,

(And this generalizes to R".)



Exercise 2 Test the two methods for finding

Pc—&

where




