There is a circle of ideas related to linear independence, span, and basis for vector spaces, which it is good
to try and understand carefully. That's what we'll do today. These ideas generalize (and use) ideas we've
already explored more concretely, and facts we already know to be true for the vector spaces . (A
vector space that does not have a basis with a finite number of elements is said to be infinite dimensional.
For example the space of all polynomials of arbitrarily high degree is an infinite dimensional vector space.
We often study finite dimensional subspaces of infinite dimensional vector spaces.)

I Theorem 1 ;\constructing a basis from a spanning set): Let V" be a vector space of dimension at least one,
mn{v v 1=V

=1° 227 o
Then a subset of the spanning set is a basis for V. (We followed a procedure like this to extract bases for
Col A.)
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Theorem 2 Let ¥ be a vector space, with basis § = { b.b, ..b } Then any set in } containing more

than n elements must be linearly dependent. (We used reduced row echelon form to understand this in [R”.)
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Theorem 3 Let V be a vector space, with basis = {Ql, 22, Qn } Then no set o0 = {Ql, a,, .. Qp} with

p < nvectors can span V. (We know this for R”.)
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Theorem 4 Let V be a vector space, with basis = {Ql, 22, Qn } Leto = {gl, a,, .. gp} be a set of

independent vectors that don't span V. Then p < n, and additional vectors can be added to the set o to
create a basis { 4,4y 4, -4 } (We followed a procedure like this when we figured out all the
subspaces of R3.)
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Theorem 5 Let Let 7 be a vector space, with basis = {Ql, b, ..b, } Then every basis for /' has exactly
n vectors. (We know this for R”.)
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Theorem 6 Let Let V' be a vector space, with basis § = {Ll, LQ, } If a= {gl, a,, .. Qn} is

..b
b
a, } = V, then the set o is automatically

another collection of exactly » vectors in V, and if span { a,.4,, ..
linearly independent and a basis. Conversely, if the set { a,.4, .4 } is linearly independent, then
span { 4,4, .4 } = Vis guaranteed, and o is a basis. (We know all these facts for " from reduced
row echelon form considerations.)
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Corollary Let Let V' be a vector space of dimension n. Then the subspaces of /" have dimensions
0,1,2,.n—1,n (Weknow this for k”.)
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Remark We used the coordinate transformation isomorphism between a vector space V' with basis
B= { b T’ 22, ..h } for Theorem 2, but argued more abstractly for the other theorems. An alternate
=n

(quicker) approach is to just note that because the coordinate transformation is an isomorphism it preserves
sets of independent vectors, and maps spans of vectors to spans of the image vectors, so maps subspaces
to subspaces. Then every one of the theorems above follows from their special cases in R”?, which we've
already proven. But this shortcut shortchanges the conceptual ideas to some extent, which is why we've
discussed the proofs more abstractly.
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4.6 The four subspaces associated with a matrix. the rank of a matrix.
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Let A be an m x n matrix. There are four subspaces associated with 4. To keep them straight, keep in
mind the associated linear transformation

T:Rr—Rm givenby T(x) =4 x.

And, as usual, we can express 4 in terms of its columns, 4 = [Q a, ..a ] . Then the two subspaces

1 £
we know well are

ColAZSpan{gl,gz, ...gn} c Rm

NulAd={x€R':4x=0} S R".
And, in your homework you already figured out the "rank + nullity" theorem, that
dim(Col A) + dim(NulA) =n. =% clumng = dina dowain,
The reason for this is that if p is the number of pivots in the reduced row echelon form of 4, then

dim(ColA) =p
dim(Nul A) =n — p.

The number of pivots, i.e. dim (Col A) is called the rank of the matrix 4. What are the other two
subspaces and why do we care? Well,



«  First, recall the geometry fact that the dot product of two vectors in R” is zero if and only if the vectors
are perpendicular, i.e.

u-y=0 ifandonlyifu 1 y.

(Well, we really only know this in R? or R3 so far, from multivariable Calculus class. But it's true for all
k", as we'll see in Chapter 6.) So for a vector x € Nul A we can interpret the equation
A4x=0

as saying that x is perpendicular to every row of 4. Because the dot product distributes over addition, we
see that each x € Nul A is perpendicular to every linear combination of the rows of 4. This motivates the
next subspace associated with 4, namely the rowspace. In other words, if we express A in terms of its
rows,

R, R, %
R, 2= |R%
A= Az =
—
R, R. %

then ‘.{. AJ - 8
Row A := span{EI,R Km} c R, __;( I {&d,\ PMEL A

And, Row A 1 Nul A.

As we do elementary operations on the rows of 4 we don't change their span, so we get a great basis for
Row A by using the non-zero rows of rref (4)...as in your food for thought this past Friday, and this
week's homework. So, the dimension of Row(4) is p, the number of pivots in the reduced matrix. So in
the domain R”, we have this picture:

dim(NulA)=n—p
dim(RowA)=p o
NulA 1 Row A.

The final subspace lives in the codomain R, along with Col A. Well, Col A = Row AT And so Nul AT is
the final subspace. Since A" has m columns an p pivots, there are m — p free parameters when we solve
ATy =0, so dim (Nul AT) =m — p and in the codomain R” we have this picture:

Col A= Row(4")
dim (Row AT) =p
dim(NulAT) =m-—p
Nul A" 1 Row A”.



small example.
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Here's a schematic of what's going on, stolen from the internet. The web site I stole it from looks pretty
good....

http://www_.itshared.org/2015/06/the-four-fundamental-subspaces.html




More details on the decompositions .... In the domain R” , the two subspaces associated to 4 are Row A
and Nul A. Notice that the only vector in their intersection is the zero vector, since

x € RowA N Nul A =x°+x=0 = x=0.

So, let

{ll’—Q’ lp} be a basis for Row A4

{yl,v LY _p} be a basis for Nul A4.

Then we can check that set of n vectors obtained by taking the union of the two sets,

{wpuy, o, v,v,, v,
is actually a basis for R”. This is because we can show that the n vectors in the set are linearly
independent, so they automatically span R” and are a basis: To check independence,, let

c, u, + czgz-l— ...-I—cplp-l— dlyl + d222+ ...—I—dn_pzn_p:Q.
then
c, u, + Czlz—" ...+cpu = —dlzl - dzzz' ...—dn_pzn_p.

Since the vector on the left is in Row A and the one that it equals on the right is in Nul A4, this vector is the
Zero vector:

clll—i-czug—l— ..+cplp=Q= —dlzl—dzgz— ~d, v
Since {ll’lz’ gp} and {21, Yy, ¥, _p} are linearly independent sets, we deduce from these two
equations that
c=c, = =cp=0, d=d,= Zdn_pZO

Q.E.D.
So the picture on the previous page is completely general, also for the decomposition of the codomain.
One can check that the transformation 7'(x) = A4 x restricts to an isomorphism from Row A4 to Col 4,
because itis 1 — 1 on these subspaces of equal dimension, so must also be onto. So, T squashes Nul 4,
and maps every translation of Nul/ A to a point in Col A. More precisely, Each
xe R

can be written uniquely as
x=u-+y withu € RowA, y € Nul A.

and

T T(x) € Col (A).

=

ty)=T(u)+T(»)
As sets,
T({w+ Nuld})=T(un).



