
There is a circle of ideas related to linear independence, span, and basis for vector spaces, which it is good 
to try and understand carefully.  That's what we'll do today.  These ideas generalize (and use) ideas we've 
already explored more concretely, and facts we already know to be true for the vector spaces n.    (A 
vector space that does not have a basis with a finite number of elements is said to be infinite dimensional.  
For example the space of all polynomials of arbitrarily high degree is an infinite dimensional vector space.  
We often study finite dimensional subspaces of infinite dimensional vector spaces.)

Theorem 1  (constructing a basis from a spanning set):  Let V be a vector space of dimension at least one, 
and let  span v1, v2,  ... vp = V.  
Then a subset of the spanning set is a basis for V.   (We followed a procedure like this to extract bases for 
Col A.)

Theorem 2  Let V be a vector space, with basis = b1, b2,  ... bn .  Then any set in V containing more 
than n elements must be linearly dependent. (We used reduced row echelon form to understand this in n.)



Theorem 3  Let V be a vector space, with basis = b1, b2,  ... bn .  Then no set  = a1, a2,  ... ap  with 
p n vectors can span V.  (We know this for n.)  

Theorem 4  Let V be a vector space, with basis = b1, b2,  ... bn .  Let  = a1, a2,  ... ap  be a set of 

independent vectors that don't span V.  Then p n, and additional vectors can be added to the set  to 
create a basis  a1, a2,  ... ap, ... an   (We followed a procedure like this when we figured out all the 
subspaces of 3.)





Theorem 5  Let Let V be a vector space, with basis = b1, b2,  ... bn .  Then every basis for V has exactly
n vectors.   (We know this for n.)

Theorem 6   Let Let V be a vector space, with basis = b1, b2,  ... bn .  If    = a1, a2,  ... an  is 

another collection of exactly  n vectors in V, and if  span a1, a2,  ... an = V, then the set  is automatically
linearly independent and a basis.  Conversely, if the set a1, a2,  ... an  is linearly independent, then 

span a1, a2,  ... an = V is guaranteed, and  is a basis.  (We know all these facts for n from reduced 
row echelon form considerations.)



Corollary   Let Let V be a vector space of dimension n.  Then the subspaces of V have dimensions 
0, 1, 2,...n 1, n.  (We know this for n.)

Remark  We used the coordinate  transformation isomorphism between a vector space V with basis 
= b1, b2,  ... bn  for Theorem 2, but argued more abstractly for the other theorems.  An alternate 

(quicker) approach is to just note that because the coordinate transformation is an isomorphism it preserves
sets of independent vectors, and maps spans of vectors to spans of the image vectors, so maps subspaces 
to subspaces.  Then every one of the theorems above follows from their special cases in n,  which we've 
already proven.  But this shortcut shortchanges the conceptual ideas to some extent, which is why we've 
discussed the proofs more abstractly.
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          4.6  The four subspaces associated with a matrix.  the rank of a matrix.

Announcements: 

Warm-up Exercise:



Let A be an m n matrix.  There are four subspaces associated with A.  To keep them straight, keep in 
mind the associated linear transformation

T : n m  given by T x = A x.

And, as usual, we can express A in terms of its columns, A = a1  a2   ... an  .  Then the two subspaces 
we know well are

Col A = span a1, a2,  ... an  m  

Nul A = x n : A x = 0 n.

And, in your homework you already figured out the "rank + nullity" theorem, that

dim Col A  dim Nul A = n.

The reason for this is that if p is the number of pivots in the reduced row echelon form of A, then

 dim Col A = p  
 dim Nul A = n p.

The number of pivots, i.e. dim Col A  is called the rank of the matrix A.   What are the other two 
subspaces and why do we care?  Well, 



    First, recall the geometry fact that the dot product of two vectors in n is zero if and only if the vectors
are perpendicular, i.e.

u  v = 0     if and only if u  v .

 (Well, we really only know this in 2 or 3 so far, from multivariable Calculus class. But it's true for all 
n, as we'll see in Chapter 6.)   So for a vector x Nul A we can interpret the equation 

A x = 0

as saying that x is perpendicular to every row of A.  Because the dot product distributes over addition, we 
see that each x  Nul A is perpendicular to every linear combination of the rows of A.  This motivates the 
next subspace associated with A, namely the rowspace.  In other words, if we express A in terms of its 
rows,

A = 

   R1   

  R2  

:

     Rm    

then 
Row A  span R1, R2, ... Rm

n.

And, Row A  Nul A.  

As we do elementary operations on the rows of A we don't change their span, so we get a great basis for 
Row A by using the non-zero rows of rref A ...as in your food for thought this past Friday, and this 
week's homework.   So, the dimension of Row A  is p, the number of pivots in the reduced matrix.  So in 
the domain n, we have this picture:

dim Nul A = n p
dim Row A  = p
Nul A Row A.  

The final subspace lives in the codomain m, along with Col A.  Well,  Col A = Row AT.  And so Nul AT is 
the final subspace.  Since AT has m columns an p pivots, there are m p free parameters when we solve 
ATy = 0, so dim Nul AT = m p and in the codomain m we have this picture:

Col A = Row AT

dim Row AT = p
dim Nul AT = m p

Nul AT  Row AT.



small example.
T : 2 2 

T
x1
x2

=
1 1

2 2

x1
x2

S
y1
y2

=
1 2

1 2

y1
y2



Here's a schematic of what's going on, stolen from the internet.  The web site I stole it from looks pretty 
good....

http://www.itshared.org/2015/06/the-four-fundamental-subspaces.html



More details on the decompositions ....  In the domain n , the two subspaces associated to A are  Row A 
and Nul A.  Notice that the only vector in their intersection is the zero vector, since 

x Row A  Nul A      x  x = 0         x = 0.  

So, let 
u1, u2,  ... up        be a basis for    Row A

v 1, v 2,  ... v n p       be a basis for Nul A.

Then we can check that set of n vectors obtained by taking the union of the two sets,
u1, u2,  ... up, v 1, v 2,  ... v n p  

is actually a basis for n.   This is because we can show that the n vectors in the set are linearly 
independent, so they automatically span n and are a basis:  To check independence,, let

c1 u1   c2 u2   ...  cp up   d1 v1   d2 v2   ...  dn p v n p = 0.
then

c1 u1   c2 u2   ...  cp up =  d1 v1   d2 v2   ...  d n p vn p.

Since the vector on the left is in Row A and the one that it equals on the right is in Nul A, this vector is the 
zero vector:

c1 u1   c2 u2   ...  cp up =  0 =  d1 v1   d2 v2   ...  dn p vn p.

Since u1, u2,  ... up  and v 1, v 2,  ... v n p  are linearly independent sets,  we deduce from these two 
equations that

c1= c2 = ...  = cp = 0,            d1= d2 = ...  = dn p = 0 .
Q.E.D.

So the picture on the previous page is completely general, also for the decomposition of the codomain.   
One can check that the transformation T x = A x restricts to an isomorphism from Row A to Col A, 
because it is 1 1 on these subspaces of equal dimension, so must also be onto.  So, T squashes Nul A, 
and maps every translation of Nul A to a point in Col A.  More precisely, Each

x  n

can be written uniquely as
x = u  v      with u  Row A,  v   Nul A.

and

T u v = T u T v = T u Col A .
As sets,

T u Nul A = T u .


