
Math 2270-004  Week 9 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  4.6-4.7, 5.1-5.2   

Mon Mar 5
       4.5  General theorems about finite dimensional vector spaces, bases, spanning sets, linearly 
independent sets and subspaces.
     

Announcements: 

Warm-up Exercise:

 



Monday Review!   

We've been studying vector spaces, which are a generalization of n.  They occur as subspaces of n; also
as vector spaces and subspaces of matrices, and of function spaces.

We've been studying linear transformations T : V W between vector spaces, which are generalizations 
of matrix transformations T : n m given as T x = A x.

For an m n matrix A there are two interesting subspaces:  Nul A = x n : A x = 0  and 
Col A = b m : b = A x, x n  = span a1, a2, ... an  . (Here we expressed A = a1 a2 ... an   in 
terms of its columns.)   Through homework and food for thought questions we've understood the rank+
nullity Theorem, that dim Nul A  dim Col A = n.  This theorem follows from considerations of the 
reduced row echelon form of A.

In the Friday food for thought questions this past Friday we realized there's a third interesting subspace 
associated to the matrix A, namely Row A, which is the subspace in n spanned by the rows of A.  We'll 
see the fourth and final subspace associated with A tomorrow, and what how these four subspaces are 
connected to the domain and codomain geometry of the transformation T x = A x.  (This is section 4.6, 
which we've been secretly thinking about for the past week. We'll utilize many of these ideas again in 
Chapter 6, e.g. section 6.5.)

We've defined kernel T and range T for linear transformations T : V W, generalizing Nul A and Col A  
for matrix transformations.

We've defined what it means for a linear transformation T : V W to be an isomorphism, and checked that 
in this case the inverse function T 1 : W V is also a linear transformation (isomorphism) - generalizing 
the notion of invertible matrix transformations T : n n that are given as T x = A x, with 
T 1 y = A 1 y .

With a basis = v1, v2,  ... vn  for a vector space V we can define the coordinate transformation 
isomorphism T : V n

T c1 v1 c2  v2  ...  cn  vn

c1 

c2 

:

cn 

 = v   

and use these coordinate systems to answer questions about V.



There is a circle of ideas related to linear independence, span, and basis for vector spaces, which it is good 
to try and understand carefully.  That's what we'll do today.  These ideas generalize (and use) ideas we've 
already explored more concretely, and facts we already know to be true for the vector spaces n.    (A 
vector space that does not have a basis with a finite number of elements is said to be infinite dimensional.  
For example the space of all polynomials of arbitrarily high degree is an infinite dimensional vector space.  
We often study finite dimensional subspaces of infinite dimensional vector spaces.)

Theorem 1  (constructing a basis from a spanning set):  Let V be a vector space of dimension at least one, 
and let  span v1, v2,  ... vp = V.  
Then a subset of the spanning set is a basis for V.   (We followed a procedure like this to extract bases for 
Col A.)

Theorem 2  Let V be a vector space, with basis = b1, b2,  ... bn .  Then any set in V containing more 
than n elements must be linearly dependent. (We used reduced row echelon form to understand this in n.)



Theorem 3  Let V be a vector space, with basis = b1, b2,  ... bn .  Then no set  = a1, a2,  ... ap  with 
p n vectors can span V.  (We know this for n.)  

Theorem 4  Let V be a vector space, with basis = b1, b2,  ... bn .  Let  = a1, a2,  ... ap  be a set of 

independent vectors that don't span V.  Then p n, and additional vectors can be added to the set  to 
create a basis  a1, a2,  ... ap, ... an   (We followed a procedure like this when we figured out all the 
subspaces of 3.)


