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5.5 Complex eigenvalues and eigenvectors
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We'll focus on 2 x 2 matrices, for simplicity. In this case it will turn out that a matrix with real entries and
complex eigenvalues is always similar to a rotation-dilation matrix.
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Definition A matrix of the form 4 = is called a rotation-dilation matrix, because for
a
r=. a* + b* we can rewrite 4 as rota les L %. = 2 a
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a _b b . b
cos(0) -sin(O R
L T [ este) sine) -
b a sin(0) cos(0)
r r

So the transformation 7'(x) = 4 x rotates vectors by an angle 6 and then scales them by a factor of 7. (So
A? rotates by an angle 2 0 and scales by rz; A rotates by an angle 3 0 and scales by r3, etc.
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Exercise 1 Draw the transformation picture for
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Exercise 2) What are the eigenvalues of a rotation-dilation matrix 4 = ?
a
- = Q- >\ - l) T 2
[A )‘Il = (A-y 4 b = O
2
b a-N (}\—o\) = - Ll
A-a = t2b

A=at<h
It is possible for a matrix 4 with real entries to be diagonalizable if one allows complex scalars and vectors,
even if it's not diagonalizable with real eigenvalues and eigenvectors. You saw an example of that on a
food for thought problem, if you weren't afraid. We'll use a matrix today that we'll use later as well, in
section 5.6, to study an interesting discrete dynamical system. This matrix is not a rotation-dilation matrix,
but it is similar to one, and that fact will help us understand the discrete dynamical system.
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Find the (complex) eigenvalues and eigenvectors for B.
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General facts we saw illustrated in the example, about complex eigenvalues and eigenvectors: Let 4 be a
matrix with real entries, and let
s WA td e e

A
Av=Ay

1<}

withA=a + bi,y=wu + i wcomplex, (a,b € R,u, w € R"). Then we write

ReA=a, ImA=5b

Reyv=u, Imy=w.
So, the equation 4 ¥y = A y expands as —/ 3
= = A2+ i AG = - b3)
A+iw)=(a+bi)(w+iw).
It will always be true then that
- ==
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(b3 Owo)
econjugate A= a — bi is also an eigenvalue, and th¢ conjugate vector
v=u-iw will be a corresporjding eigenvector, because it will satisfy

Au-iw)=(a-bi)(u-iw)

Exercise 4 Verify that if the first eigenvector equation holds, then

Then check that these equalities automatically make the second conjugate eigenvector equation true as well.
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matrix.

Theorem Let A4 beareal 2 x 2 matrix with complex eigenvalues. Then A is similar to a rotation-dilation

proof: Let a complex eigenvalue and eigenvector be given by A =a + b i,y=u + i w complex, (
a,b € Ru,w € R*) Choose

[Rey Imy]=[u w]

(One can check that {u, w} is automatically independent.) Then, using the equations of Exercise 4, we
mimic what we did for diagonalizable matrices...
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AP=P
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(The matrix on the right is a rotation-dilation matrix ... nobody ever said what the sign of b was.
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It's a mess, but we can carry out the procedure of the theorem, for the matrix B in exercise 3,

9 -4
119
=21 0 -2
using A =.9-21i, y= =1, +i 0 , one gets
0 -2 L1 02
P=[Rey Imy]= : pl=—
1 0 21 -10
| 1o 2][9 -4]0 -2
P'BP=—
21 -10 1 0
. 2 ]
9 -2 V-85 V -85
P'BP= = /85
29 . .9
V .85 V .85
cos(O) -sin(6
Plpp=r (8) (6)
sin(0) cos(0)

2
forr=,.85 = .92 ,06= arctan(; ) =~ .22 radians.
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