There are situations where we are guaranteed a basis of \mathbb{R}^n made out eigenvectors of A:

Theorem 1: Let A be an $n \times n$ matrix with distinct real eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ be corresponding (non-zero) eigenvectors, $A \mathbf{v}_j = \lambda_j \mathbf{v}_j$. Then the set

$$\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\}$$

is linearly independent, and so is a basis for \mathbb{R}^n....this is one we can prove!

Nifty proof: Assume the vectors in the set are dependent. (we’ll end up with a contradiction)

$$\{\mathbf{v}_i\} \text{ independent}$$

$$\{\mathbf{v}_1, \mathbf{v}_2\} \text{ ?}$$

$$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$

$$\vdots$$

$$\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n\} \text{ dependent}$$

Let $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p\}$ be the first dependent set in this list.

Since it’s the first (shortest) set, \mathbf{v}_p is a combination of the earlier \mathbf{v}_j’s

(1)

$$\mathbf{v}_p = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_p \mathbf{v}_p$$

not all $c_j = 0$

$$\Rightarrow A \mathbf{v}_p = A(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_p \mathbf{v}_p)$$

$$\lambda_p \mathbf{v}_p = c_1 \lambda_1 \mathbf{v}_1 + c_2 \lambda_2 \mathbf{v}_2 + \ldots + c_p \lambda_p \mathbf{v}_p$$

(2)

$$\lambda_p \mathbf{v}_p = c_1 \lambda_1 \mathbf{v}_1 + c_2 \lambda_2 \mathbf{v}_2 + \ldots + c_p \lambda_p \mathbf{v}_p$$

From (2), $\lambda_p \neq 0$, if it was,

$$\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_p\} \text{ is dependent}$$

(3)

$$\mathbf{v}_p = c_1 \frac{\lambda_1 \mathbf{v}_1}{\lambda_p} + c_2 \frac{\lambda_2 \mathbf{v}_2}{\lambda_p} + \ldots + c_{p-1} \frac{\lambda_{p-1} \mathbf{v}_{p-1}}{\lambda_p}$$

Eqn 1 - Eqn 3:

$$\mathbf{0} = c_1 \left(1 - \frac{\lambda_1}{\lambda_p}\right) \mathbf{v}_1 + c_2 \left(1 - \frac{\lambda_2}{\lambda_p}\right) \mathbf{v}_2 + \ldots + c_{p-1} \left(1 - \frac{\lambda_{p-1}}{\lambda_p}\right) \mathbf{v}_{p-1}$$

no $\frac{\lambda_j}{\lambda_p} = 1$ on RHS,

showed $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_{p-1}\}$ is also dependent!!
Theorem 2

Let $A_{n \times n}$ have factored characteristic polynomial

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} \cdots (\lambda - \lambda_m)^{k_m}$$

where like terms have been collected so that each λ_j is distinct (i.e., different). Notice that

$$k_1 + k_2 + \cdots + k_m = n$$

because the degree of $p(\lambda)$ is n.

- Then $1 \leq \dim(E_{\lambda = \lambda_j}) \leq k_j$. If $\dim(E_{\lambda = \lambda_j}) < k_j$ then the λ_j eigenspace is called defective.
- The matrix A is diagonalizable if and only if each $\dim(E_{\lambda = \lambda_j}) = k_j$. In this case, one obtains an \mathbb{R}^n eigenbasis simply by combining bases for each eigenspace into one collection of n vectors. (The same definitions and reasoning can apply to complex eigenvalues and eigenvectors, and a basis of \mathbb{C}^n.)

(The proof of this theorem is fairly involved. It was illustrated in a positive way by Exercise 2, and in a negative way by Exercise 3.)

\begin{equation*}
\text{yesterday} \quad B \quad \text{that was diagonalizable.} \quad |B - \lambda I| = -(\lambda - 2)^2 (\lambda - 3) \quad \dim E_{\lambda = 2} = 2 \quad \dim E_{\lambda = 1} = 1
\end{equation*}

\begin{equation*}
\text{warming today} \quad C \quad \text{was not diagonalizable.} \quad |C - \lambda I| = -(\lambda - 2)^3 (\lambda - 3) \quad \dim E_{\lambda = 2} = 1 \quad \text{← defective}
\end{equation*}
Tues Mar 13

• 5.3 Diagonalizable matrices and Similar matrices.

Announcements:

⊙ Office hours today canceled.
⊙ I’ll try this afternoon to put up a practice test.

‘til 12:57

Warm-up Exercise:

Find all eigenvalues, and eigenspace basis for

$$C = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

for triangular matrix, diag:

- Eigenvalues: $C - \lambda I = \begin{bmatrix} 2-2 & 1 & 0 \\ 0 & 2-\lambda & 0 \\ 0 & 0 & 3-\lambda \end{bmatrix}$
 $\det = (2-\lambda)(3-\lambda)$

- $E_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$
- $E_{\lambda=3} = \text{span} \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$

- $E_{\lambda=2} = \text{Nul} (C - 2I)$
- $E_{\lambda=3} = \text{Nul} (C - 3I)$

- Algebraic multiplicity of $\lambda=2$ is 2
- $p(\lambda) = -(\lambda-2)(\lambda-3)$
- But $E_{\lambda=2}$ is only 1-dim. (\(\neq\))

we only have 2 independent eigenvectors, so, no basis of \mathbb{R}^3 made out eigenvectors for C.
Continuing with the example from yesterday ...

If, for the matrix $A_{n \times n}$, there is a basis for \mathbb{R}^n consisting of eigenvectors of A, then we can understand the geometry of the transformation

$$T(\mathbf{x}) = A \mathbf{x}$$

almost as well as if A is a diagonal matrix, and so we call such matrices \textit{diagonalizable}. Having such a basis of eigenvectors for a given matrix is also extremely useful for algebraic computations, and will give another reason for the word \textit{diagonalizable} to describe such matrices.

Use an \mathbb{R}^3 basis made of out eigenvectors of the matrix B in Exercise 2, yesterday, and put them into the columns of a matrix we will call P. We could order the eigenvectors however we want, but we'll put the $E_{\lambda=2}$ basis vectors in the first two columns, and the $E_{\lambda=3}$ basis vector in the third column:

$$P := \begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
2 & -2 & 1 \\
\end{pmatrix}.$$

Now do algebra (check these steps and discuss what's going on!)

$$B = \begin{pmatrix} 4 & -2 & 1 \\ 2 & 0 & 1 \\ 2 & -2 & 3 \end{pmatrix} \quad \text{and} \quad P := \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & -2 & 1 \end{pmatrix}.$$

In other words,

$$B P = P D,$$

$$B = P D P^{-1}, \quad \text{mult by } P^{-1} \text{ on the right} \quad \text{mult by } P \text{ on the left}.$$
where D is the diagonal matrix of eigenvalues (for the corresponding columns of eigenvectors in P).

Equivalently (multiply on the right by P^{-1} or on the left by P^{-1}):

$$B = PD P^{-1} \quad \text{and} \quad P^{-1}BP = D.$$

Exercise 1) Use one of the identities above to show how B^{100} can be computed with only two matrix multiplications!

$$B^{100} = \underbrace{PD P^{-1} PDP^{-1} \cdots PDP^{-1}}_{100 \text{ times}} = PD^{100} P^{-1}$$

\[
\begin{bmatrix}
4 & -2 & 1 \\
2 & 0 & 1 \\
2 & -2 & 3 \\
\end{bmatrix}^{100}
\]

\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
2 & -2 & 1 \\
\end{bmatrix}^{100}
\]

\[
\begin{bmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\lambda_1 & 0 & 0 \\
0 & \lambda_2 & 0 \\
0 & 0 & \lambda_3 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}
\]
Definition: Let $A_{n \times n}$. If there is an \mathbb{R}^n (or \mathbb{C}^n) basis v_1, v_2, \ldots, v_n consisting of eigenvectors of A, then A is called diagonalizable. This is precisely why:

Write $A v_j = \lambda_j v_j$ (some of these λ_j may be the same, as in the previous example). Let P be the matrix

$$P = [v_1 \mid v_2 \mid \ldots \mid v_n].$$

Then, using the various ways of understanding matrix multiplication, we see

$$A P = A [v_1 \mid v_2 \mid \ldots \mid v_n] = [\lambda_1 v_1 \mid \lambda_2 v_2 \mid \ldots \mid \lambda_n v_n]$$

$$= [v_1 \mid v_2 \mid \ldots \mid v_n] \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

$$A P = P \begin{bmatrix} \lambda_1 & 0 & \ldots & 0 \\ 0 & \lambda_2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & \lambda_n \end{bmatrix}.$$

Unfortunately, as we've already seen, not all matrices are diagonalizable:

Exercise 2) Show that

$$C := \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

is not diagonalizable. (Even though it has the same characteristic polynomial as B, which was diagonalizable.

This was your Tuesday warm-up exercise.
Similar matrices. This generalizes the way in which diagonalizable matrices are similar to diagonal ones:

Definition The \(n \times n \) matrices \(A, B \) are said to be *similar* if there is and invertible matrix \(P \) so that
\[
P^{-1} A P = B.
\]

Notice that *being similar* is an equivalence relation:

1) If \(A \) is similar to \(B \) with the matrix \(P \), then \(B \) is similar to \(A \), with the matrix \(P^{-1} \):
\[
P^{-1} A P = B \quad \Rightarrow \quad A = P B P^{-1}.
\]

2) \(A \) is similar to itself, with \(P = I \):
\[
A = I^{-1} A I
\]

3) Being similar is transitive: if \(A \) is similar to \(B \) and \(B \) is similar to \(C \), then \(A \) is similar to \(C \): If we have invertible matrices \(P, Q \) so that
\[
P^{-1} A P = B
\]
\[
Q^{-1} B Q = C
\]

then
\[
Q^{-1} P^{-1} A P Q = Q^{-1} B Q = C.
\]

so \(A \) is similar to \(C \) via the matrix \(PQ \).

These three "equivalence relations" mean that the space all \(n \times n \) matrices can be partitioned into subsets of matrices which are similar to each other.

We'll see tomorrow that similar matrices represent the same linear transformation from \(\mathbb{R}^n \) to \(\mathbb{R}^n \), but with the matrices expressed with respect to different bases. For now (and for one of your homework problems tomorrow), we need to know that

Theorem Let \(A \) and \(B \) be similar matrices. Then they have the same characteristic polynomial, so the same eigenvalues. (They won't have the same eigenvectors, though.)

proof Let
\[
P^{-1} A P = B.
\]

Then
\[
det(B - \lambda I) = det(P^{-1} A P - \lambda I)
\]
\[
= det(P^{-1} A P - \lambda P^{-1} I P)
\]
\[
= det(P^{-1} (A - \lambda I) P)
\]
\[\det(P^{-1}) \det(A - \lambda I) \det(P) = \det(A - \lambda I). \]

QED