
There are situations where we are guaranteed a basis of n made out eigenvectors of A: 

Theorem 1:  Let A be an n n matrix with distinct real eigenvalues 1, 2 , .... n.  Let v1, v2, ... vn be 

corresponding (non-zero) eigenvectors, A vj = j vj.  Then the set

 v1, v2, ... vn  
is linearly independent, and so is a basis for n.....this is one we can prove!



Theorem 2

Let An n have factored characteristic polynomial

 p = 1 n
1

k
1

2

k
2

... m

k
m
  

where like terms have been collected so that each j is distinct (i.e different).  Notice that 
k1 k2 ... km = n 

because the degree of p  is n.

   Then 1  dim E
=

j
kj .   If  dim E

=
j

kj then the j eigenspace is called defective.

   The matrix A is diagonalizable if and only if each dim E
=

j
= kj .  In this case, one obtains an n 

eigenbasis simply by combining bases for each eigenspace into one collection of n vectors.  (The same 
definitions and reasoning can apply to complex eigenvalues and eigenvectors, and a basis of n.)

(The proof of this theorem is fairly involved. It was illustrated in a positive way by Exercise 2, and in a 
negative way by Exercise 3.  )
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          5.3 Diagonalizable matrices and  Similar matrices.

Announcements: 

Warm-up Exercise:



Continuing with the example from yesterday ...

If, for the matrix An n, there is a basis for n consisting of eigenvectors of A, then   we can understand 
the geometry of the transformation

T x = A x  

almost as well as if A is a diagonal matrix, and so we call such matrices diagonalizable.  Having such a 
basis of eigenvectors for a given matrix is also extremely useful for algebraic computations, and will give 
another reason for the word diagonalizable to describe such matrices.

Use an 3 basis made of out eigenvectors of the matrix B in Exercise 2, yesterday, and put them into the 
columns of a matrix we will call P.  We could order the eigenvectors however we want, but we'll put the 
E

= 2
 basis vectors in the first two columns, and the E

= 3
 basis vector in the third column:

P :=

0 1 1

1 0 1

2 2 1
  .

Now do algebra (check these steps and discuss what's going on!)
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2 2 3
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2 0 0

0 2 0

0 0 3
   .

In other words,
 B P = P D , 



where D is the diagonal matrix of eigenvalues (for the corresponding columns of eigenvectors in P).  
Equivalently (multiply on the right by P 1  or on the left by P 1):

B = P D P 1 and P 1BP = D.
Exercise 1)  Use one of the the identities above to show how B100 can be computed with only two matrix 
multiplications! 



Definition:  Let An n.  If there is an n (or n  basis v1, v2, ..., vn consisting of eigenvectors of A, then A 
is called diagonalizable.  This is precisely why:

Write A vj = j vj  (some of these j may be the same, as in the previous example).  Let P be the matrix
P = v1 v2 ... vn . 

Then, using the various ways of understanding matrix multiplication, we see

A P = A v1 v2 ... vn  = 1v1 2v2 ... nvn           

  = v1 v2 ... vn

1 0 ... 0

0 2 ... 0

: : ... :

0 0 ... n

. 

A P = P D 
A = P D P 1 
P 1A P = D .

Unfortunately, as we've already seen, not all matrices are diagonalizable:
Exercise 2)  Show that 

C :=

2 1 0

0 2 0

0 0 3
  

is not diagonalizable.  (Even though it has the same characteristic polynomial as B, which was 
diagonalizable.



Similar matrices.   This generalizes the way in which diagonalizable matrices are similar to diagonal ones:

Definition  The n n matrices A, B are said to be similar if there is and invertible matrix P so that
P 1 A P = B.

Notice that being similar is an equivalence relation:

1)  If A is similar to B with the matrix P, then B is similar to A,  with the matrix P 1 :

P 1 A P = B         A = P B P 1.
2)  A is similar to itself, with P = I:

A = I 1 A I  

3)  Being similar is transitive:  if A is similar to B and B is similar to C, then A is similar to C: If we have 
invertible matrices P, Q so that

P 1A P = B
Q 1B Q = C

then

Q 1P
1
A P Q = Q 1BQ = C.

so A is similar to C via the matrix PQ.

These three "equivalence relations" mean that the space all n n matrices can be partitioned into subsets of
matrices which are similar to each other.

We'll see tomorrow that similar matrices represent the same linear transformation from n to n, but with 
the matrices expressed with respect to different bases.  For now (and for one of your homework problems 
tomorrow), we need to know that

Theorem  Let A and B be similar matrices.  Then they have the same characteristic polynomial, so the same 
eigenvalues.  (They won't have the same eigenvectors, though.)

proof  Let
P 1 A P = B.

Then

det B  I  = det  P 1A P  I

= det P 1A P   P 1 I P      

= det P 1 A  I  P



= det P 1  det A  I  det P  

= det A  I .
QED


