Fri Jan 26

1.8 Introduction to linear transformations.

<u>Definition</u>: A function *T* which has domain equal to \mathbb{R}^n and whose range lies in \mathbb{R}^m is called a *linear transformation* if it transforms sums to sums, and scalar multiples to scalar multiples. Precisely, $T : \mathbb{R}^n \to \mathbb{R}^m$ is *linear* if and only if

$$T(\underline{u} + \underline{v}) = T(\underline{u}) + T(\underline{v}) \qquad \forall \ \underline{u}, \underline{v} \in \mathbb{R}^{n}$$

$$T(c \ \underline{u}) = c \ T(\underline{u}) \qquad \forall \ c \in \mathbb{R}, \ \underline{u} \in \mathbb{R}^{n} .$$

$$domain$$

$$Notation$$
In this case we call \mathbb{R}^{m} the *codomain*. We call $T(\underline{u})$ the *image of* \underline{u} . The *range* of T is the collection of all images $T(\underline{u})$, for $\underline{u} \in \mathbb{R}^{n}$.

<u>Important connection to matrices</u>: Each matrix $A_{m \times n}$ gives rise to a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$, namely

$$T(\underline{x}) := A \underline{x} \qquad \forall \ \underline{x} \in \mathbb{R}^n$$

This is because, as we checked last week,

$$\begin{array}{ll} A(\underline{u} + \underline{v}) = A \, \underline{u} + A \, \underline{v} & \forall \, \underline{u}, \, \underline{v} \in \mathbb{R}^n \\ A(c \, \underline{u}) = c \, A \, \underline{u} & \forall \, c \in \mathbb{R}, \, \underline{u} \in \mathbb{R}^n \end{array}$$

Exercise 1) Let $T : \mathbb{R}^{2} \to \mathbb{R}^{3}$ be defined by

$$A_{3} = T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) := \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = X_1 \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} + X_2 \begin{bmatrix} -3 \\ 5 \\ 7 \end{bmatrix}$$

$$A_{3} = X_1 \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} + X_2 \begin{bmatrix} -3 \\ 5 \\ 7 \end{bmatrix}$$

$$A_{3} = X_1 \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} + X_2 \begin{bmatrix} -3 \\ 5 \\ 7 \end{bmatrix}$$

$$A_{3} = X_1 \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} + X_2 \begin{bmatrix} -3 \\ 5 \\ 7 \end{bmatrix}$$

$$A_{3} = X_1 \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix} + X_2 \begin{bmatrix} -3 \\ 5 \\ 7 \end{bmatrix}$$

Exercise 2) Consider the linear transformation $S : \mathbb{R}^2 \to \mathbb{R}$ given by

$$S\left(\left[\begin{array}{c} x_1\\ x_2 \end{array}\right]\right):=\left[\begin{array}{c} 1 & 2 \end{array}\right]\left[\begin{array}{c} x_1\\ x_2 \end{array}\right].$$

Make a geometric sketch that indicates what the transformation does. In this case the interesting behavior is in the domain.