Fri Jan 19

- 1.5 solution sets to matrix equations; homogeneous and non-homogeneous systems of equations.

Announcements:

- Canvas exists
- Posted all of Chpter 1 on Canvas (I’ll post rest of problem sets).
- FFT in 2nd half of class.

Warm-up Exercise:

Recall:

\[A \vec{x} = \vec{b} \]

is shorthand for

\[x_1 \vec{a}_1 + x_2 \vec{a}_2 + \ldots + x_n \vec{a}_n = \vec{b} \]

(where \(A = [\vec{a}_1 | \vec{a}_2 | \ldots | \vec{a}_n] \)).

Also shorthand for linear system with augmented matrix

\[\begin{bmatrix} A & \mid & \vec{b} \end{bmatrix} \]
Definition: A system of linear equations is **homogeneous** if it can be written in the form

\[A \mathbf{x} = \mathbf{0} \]

where \(A \) is an \(m \times n \) matrix, and \(\mathbf{0} \) is the zero vector in \(\mathbb{R}^m \).

Definition: A system of linear equations is **nonhomogeneous** if it can be written in the form

\[A \mathbf{x} = \mathbf{b} \]

where \(A \) is an \(m \times n \) matrix, and \(\mathbf{b} \) is non-zero, i.e. not the zero vector in \(\mathbb{R}^m \).

Our goal in section 1.5 is to understand the relationship between the solution sets of homogeneous and nonhomogeneous systems, when the matrix \(A \) is the same.

To understand how the different solution sets are related, we will check and use these algebra facts:

\[A (\mathbf{x} + \mathbf{y}) = A \mathbf{x} + A \mathbf{y} \]

\[A (c \mathbf{x}) = c A \mathbf{x} \]

\[
\begin{bmatrix}
\mathbf{a}_1 & \mathbf{a}_2 & \ldots & \mathbf{a}_n
\end{bmatrix}
\begin{bmatrix}
x_1 + y_1 \\
x_2 + y_2 \\
\vdots \\
x_n + y_n
\end{bmatrix}
= (x_1 + y_1) \mathbf{a}_1 + (x_2 + y_2) \mathbf{a}_2 + \ldots + (x_n + y_n) \mathbf{a}_n
\]

\[
\begin{bmatrix}
\mathbf{a}_1 & \mathbf{a}_2 & \ldots & \mathbf{a}_n
\end{bmatrix}
\begin{bmatrix}
c_1 x_1 \\
c_2 x_2 \\
\vdots \\
c_n x_n
\end{bmatrix}
= c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \ldots + c_n \mathbf{a}_n
\]

\[= c \left(A \mathbf{x} \right) \]
Homogeneous systems: Notice that for any matrix A, it's always true that the homogeneous equation $A \mathbf{x} = \mathbf{0}$ has a solution $\mathbf{x} = \mathbf{0}$, so homogeneous systems are always consistent. The question is whether there are more solutions. (And, we call the solution $\mathbf{x} = \mathbf{0}$ the "trivial" solution.)

Exercise 1) Find and compare the solution sets of the following two linear systems. The first one is homogeneous and the second one is non-homogeneous. How do the solutions sets appear to be related?

Exercise 1) Find and compare the solution sets of the following two linear systems. The first one is homogeneous and the second one is non-homogeneous. How do the solutions sets appear to be related?

1. \[
\begin{align*}
3x_1 + 5x_2 - 4x_3 &= 0 \\
-3x_1 - 2x_2 + 4x_3 &= 0 \\
6x_1 + x_2 - 8x_3 &= 0
\end{align*}
\]

2. \[
\begin{align*}
3x_1 + 5x_2 - 4x_3 &= 7 \\
-3x_1 - 2x_2 + 4x_3 &= -1 \\
6x_1 + x_2 - 8x_3 &= -4
\end{align*}
\]

Solution 1:
\[
\begin{align*}
x_1 &= \frac{4}{3}x_3 + \frac{1}{3}t \\
x_2 &= 0 \\
x_3 &= \text{free} = t
\end{align*}
\]

Solution 2:
\[
\begin{align*}
x_1 &= -1 + \frac{4}{3}t \\
x_2 &= 2 \\
x_3 &= \text{free} = t
\end{align*}
\]

Each solution gives position vectors of points on parallel lines; the second line is the first line, translated by the solution to 2nd system.

Warm-up exercise: until 1:00
What happened in Exercise 1 is what always happens when the non-homogeneous system is consistent. It says that for consistent nonhomogeneous systems, all solution sets are "translations" of each other.

Theorem (Fundamental Theorem of matrix equations) Suppose the equation $Ax = b$ is consistent for some b. Let p be a solution. Then the solution set of $Ax = b$ is the set of all vectors

$$w = p + v_h$$

where v_h is any solution of the homogeneous equation

$$Ax = 0.$$

(\text{is always consistent, } \{x = 0 \text{ solves homog eqn}\})

We can verify why this theorem is true!

proof:

1. **know $Ap = b.$**

 Let $Av_h = 0.$

 then $A(p + v_h) = Ap + Av_h = b + 0 = b.$

2. **If $Aq = b.$**

 then $q = p + q - p = p + \frac{q - p}{A}$

 so $q = p + v_h \text{ (where } v_h = q - p).$