Math 2270-004 Week 14-15 homework, due Tuesday April 24 at 6:00 p.m.

7.1-7.2 Diagonalization of symmetric matrices and quadratic forms

7.2: 1, 3, 5, 7, 9, 11, 16 (use technology on 16), 21

w14.1 Find a spectral decomposition for the symmetric matrix and orthonormal eigenbasis you used in problem 7 above. (See page 400 or class notes).

w14.2 For the two equations below

- (i) Diagonalize the quadratic form on the left of each equation. Classify the conic section.
- (ii) Pick your orthonormal eigenbasis $B = \{\underline{u}_1, \underline{u}_2\}$ so that it is positively oriented. Following the text, write $[\underline{x}]_B = \underline{y}$. So, $P = [\underline{u}_1, \underline{u}_2]$ is the change of coordinates matrix, $P \in B$. Sketch the conic using the rotated coordinate system.

a)
$$x_1 x_2 = 2$$

b)
$$6x_1^2 + 4x_1x_2 + 3x_2^2 = 1$$
.

w14.3 Outer product.

a) Compute

$$\begin{bmatrix} 1 & 2 \\ -2 & 4 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 3 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

using the outer product method.

<u>b</u>) Using the dot product formulation for $A_{m \times p} B_{p \times n}$, we know

$$entry_{kl}A B = row_k(A) \cdot col_l(B) = \sum_{j=1}^{p} a_{kj} b_{jl}.$$

Explain why this is the same value you get for the k l- entry of the outer sum expression

$$\sum_{j=1}^{p} \underline{a}_{j} \, \underline{b}_{j}$$

where the $\{\underline{a}_j\}$ are the columns of A and the $\{\underline{b}_j\}$ are the rows of B.

$$A = \begin{bmatrix} & | & & | & & | \\ & \underline{\boldsymbol{a}}_1 & & \underline{\boldsymbol{a}}_2 & & & \underline{\boldsymbol{a}}_p \\ & | & | & & | & | \\ & | & | & & | & \end{bmatrix} \qquad B = \begin{bmatrix} & ---\underline{\boldsymbol{b}}_1 & --- \\ & ---\underline{\boldsymbol{b}}_2 & --- \\ & \vdots & & \\ & ---\underline{\boldsymbol{b}}_p & --- \end{bmatrix} \quad .$$