Fri Feb 23

4.2 - 4.3 nullspaces and column spaces; kernel and range of linear transformations as subspaces. Linearly independent sets and bases for vector spaces.

Announcements: • start in Wed. roles • fft : (good lead in to thw).

Warm-up Exercise: The space of 2×2 matrices
$$M_{2\times2} = \begin{cases} a_{11} & a_{12} \\ a_{21} & a_{22} \end{cases}$$
: a_{11}, a_{12} : a_{12}

4.2 Null spaces, column spaces, and linear transformations from \mathbb{R}^n to \mathbb{R}^m .

<u>Definition</u> Let *A* be an $m \times n$ matrix, expressed in column form as $A = [\underline{a}_1 \ \underline{a}_2 \ \underline{a}_3 \ \dots \ \underline{a}_n]$ The *column space* of *A*, written as *Col A*, is the span of the columns:

$$Col A = span \{ \underline{a}_1 \ \underline{a}_2 \ \underline{a}_3 \ \dots \ \underline{a}_n \}$$

Equivalently, since

$$A \underline{\mathbf{x}} = x_1 \underline{\mathbf{a}}_1 + x_2 \underline{\mathbf{a}}_2 + \dots + x_n \underline{\mathbf{a}}_n$$

we see that *Col A* is also the range of the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\underline{x}) = A \underline{x}$, i.e

$$Col A = \{ \underline{b} \in \mathbb{R}^m \text{ such that } \underline{b} = A \underline{x} \text{ for some } \underline{x} \in \mathbb{R}^n \}.$$

<u>Theorem</u> By the "spans are subspaces" theorem, Col(A) is always a subspace of \mathbb{R}^m .

Exercise 2a) Consider

$$A = \begin{bmatrix} 1 & -2 & 0 & -1 & 1 \\ -2 & 4 & 0 & 2 & -2 \\ 3 & -6 & 4 & 1 & 7 \end{bmatrix}$$

By the Theorem, col(A) is a subspace of \mathbb{R}^3 . Which is it: $\{\underline{0}\}$, a line thru the origin, a plane thru the origin, or all of \mathbb{R}^3 . Hint:

$$\begin{bmatrix} 1 & -2 & 0 & -1 & 1 \\ -2 & 4 & 0 & 2 & -2 \\ 3 & -6 & 4 & 1 & 7 \end{bmatrix} \text{ reduces to } \begin{bmatrix} 1 & -2 & 0 & -1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

$$\begin{bmatrix} a_{1} \neq o \\ a_{2} = -2a_{1} + a_{3} \\ a_{3} = -a_{1} + a_{3} \\ a_{5} = a_{1} + a_{3} \end{bmatrix}$$

<u>2b</u>) Is there a more efficient way to express Col A as a span that doesn't require all five column vectors?

$$c_{1}\vec{a}_{1} + c_{2}\vec{a}_{2} + c_{3}\vec{a}_{3} + c_{4}\vec{a}_{4} + c_{5}\vec{a}_{5} = c_{1}\vec{a}_{1} + c_{2}(-2\vec{a}_{1}) + c_{3}\vec{a}_{3} + c_{4}(-\vec{a}_{1} + \vec{a}_{3}) + c_{5}(\vec{a}_{1} + \vec{a}_{3}) = d_{1}\vec{a}_{1} + d_{3}\vec{a}_{3} = c_{1}\vec{a}_{1} + d_{3}\vec{a}_{1} + d_{3}\vec{a}_{3} = c_{1}\vec{a}_{1} + d_{3}\vec{a}_{3} = c_{1}\vec{a}_{1}$$

<u>Definition</u>: If a set of vectors $\{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n\}$ in a vector space *V* is linearly independent and also spans *V*, then the collection is called a *basis* for *V*.

Exercise 3 Exhibit a basis for *col A* in Exercise 2. $\left\{\vec{a}_1, \vec{a}_3\right\} = \left\{ \begin{bmatrix} 1 \\ -2 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ -4 \end{bmatrix} \right\}.$

<u>Exercise 4</u> Exhibit a basis for P_3 in <u>Exercise 1</u>

$$\left\{ a_{0}^{\prime} + a_{1}^{\prime} t + a_{2}^{\prime} t^{2} + a_{3}^{\prime} t^{3} \right\} = \operatorname{span} \left\{ 1, t, t^{2}, t^{3} \right\}$$
and we showed $\left\{ 1, t, t^{2}, t^{3} \right\}$
are lin-ind., so a basis

We've seen that one (explicit) way that subspaces arise is as the span of a specified collection of vectors. The primary (implicit) way that subspaces are described is related to the following:

<u>Definition</u>: The *null space* of an $m \times n$ matrix A is the set of $\underline{x} \in \mathbb{R}^n$ for which $A \underline{x} = \underline{0}$. We denote this set by Nul A. Equivalently, in terms of the associated linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ given by $T(\mathbf{x}) = A \mathbf{x}$, Nul A is the set of points in the domain which are transformed into the zero vector in the codomain.

11

<u>Theorem</u> Let *A* be an $m \times n$ matrix. Then *Nul A* is a subspace of \mathbb{R}^n . + = { x & R" s.t. Ax= 0}

proof: We need to check that for H = Nul(A):

a) The zero vector of V is in H

b) H is closed under vector addition, i.e. for each $\underline{u} \in H$, $\underline{v} \in H$ then $\underline{u} + \underline{v} \in H$.

At =
$$\vec{o}$$
, A \vec{v} = \vec{o}
so A(\vec{x} + \vec{v}) = At + A \vec{v} = \vec{o} + \vec{b} = \vec{o}
so \vec{x} + \vec{v} ∈ H = Nul A

c) *H* is closed under scalar multiplication, i.e for each $\underline{u} \in H$, $c \in \mathbb{R}$, then also $c \, \underline{u} \in H$.

Nul A

$$A\vec{u}:\vec{o}.$$

 \vec{U}
 $A(\vec{u})=cA\vec{u}:\vec{o}$
 $so c\vec{u}\in Nul A$

Exercise 1a) For the same matrix *A* as in Exercise 2 from Wednesday's notes, express the vectors in Nul(A) explicitly, using the methods of Chapters 1-2. Notice these are vectors in the domain of the associated linear transformation $T : \mathbb{R}^5 \to \mathbb{R}^3$ given by $T(\underline{x}) = A \underline{x}$, so are a subspace of \mathbb{R}^5 .

The ideas of nullspace and column space generalize to arbitrary linear transformations between vectors spaces - with slightly more general terminology.

<u>Definition</u> Let *V* and *W* be vector spaces. A function $T: V \to W$ is called a *linear transformation* if for each $\underline{x} \in V$ there is a unique vector $T(\underline{x}) \in W$ and so that

- (i) $T(\underline{u} + \underline{v}) = T(\underline{u}) + T(\underline{v})$ for all $\underline{u}, \underline{v} \in V$
- (ii) $T(c \underline{u}) = c T(\underline{u})$ for all $\underline{u} \in V, c \in \mathbb{R}$

<u>Definition</u> The *kernel* (or *nullspace*) of T is defined to be $\{\underline{u} \in V : T(\underline{u}) = \underline{0}\}$.

<u>Definition</u> The range of T is $\{\underline{w} \in W : \underline{w} = T(\underline{v}) \text{ for some } \underline{v} \in V\}$.

<u>Theorem</u> Let $T: V \rightarrow W$ be a *linear transformation*. Then the kernel of *T* is a subspace of *V*. The range of *T* is a subspace of *W*.

<u>Remark</u>: The theorem generalizes our earlier one about *Nul A* and *Col A*, for matrix transformations $T : \mathbb{R}^n \to \mathbb{R}^m$, $T(\underline{x}) = A \underline{x}$.