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4.2 - 4.3 nullspaces and column spaces; kernel and range of linear transformations as subspaces.
Linearly mdependent sets and bases for vector spaces.
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4.2 Null spaces, column spaces, and linear transformations from R” to R™.

Definition Let 4 be an m x n matrix, expressed in column form as 4 = [ a,a,4,..4a ] The column space
of A, written as Col A4, is the span of the columns:

ColA= Spcm{g1 4,4, .. gn} .
Equivalently, since

Ax=x1g1 —I—ngz + .. —I—x”gn

we see that Col 4 is also the range of the linear transformation 7" : R* —»[R” given by T'(x) =4 x, 1.
ColA = {b € R" such that b= A x for some x € R"}.

Theorem By the "spans are subspaces" theorem, Col/(A4) is always a subspace of R

Exercise 2a) Consider
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By the Theorem, col(A) is a subspace of R3. Which is it: {0}, a line thru the origin,
origin, or all of R*. Hint; —_— S 5 ~—
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2b) Is there a more efficient way to express Col A)as a span that doesn't require all five column vectors?
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Definition: If a set of vectors { Y,V ¥ } in a vector space V'is linearly independent and also spans V,

then the collection is called a basis for V.

Exercise 3 Exhibit a basis for col 4 in Exercise 2. o
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Exercise 4 Exhibit a basis for P3 in Exercise 1

u 2 3
R R S
Aol e shaed %l){'—ntq'l'tg

at (in-ind, S0 & Dasns



We've seen that one (explicit) way that subspaces arise is as the span of a specified collection of vectors.
The primary (implicit) way that subspaces are described is related to the following:

Definition: The null space of an m x n matrix A4 is the set of x € R” for which 4 x = 0. We denote this
set by Nul A. Equivalently, in terms of the associated linear transformation 7 : R* — [R™ given by
T'(x) = A x, Nul A is the set of points in the domain which are transformed into the zero vector in the
codomain.

Theorem Let 4 be an m x n matrix. Then Nul A is a subspace of R”.
K = {?e R" s i A%<
proof: We need to check that for H = Nul(A4): B )

a) The zero vector of Vis in H
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b) H is closed under vector addition, i.e. for eachu € H 'y € H thenu +y € H.

&

¢) H is closed under scalar multiplication, i.e for eachu € H, c € R, then also cu € H.
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Exercise 1a) For the same matrix 4 as in Exercise 2 from Wednesday's notes, express the vectors in
Nul(A4) explicitly, using the methods of Chapters 1-2. Notice these are vectors in the domain of the
associated linear transformation 7: RS — [R3 given by T(x) = 4 x, so are a subspace of [R>.
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The ideas of nullspace and column space generalize to arbitrary linear transformations between vectors
spaces - with slightly more general terminology.

Definition Let /" and W be vector spaces. A function 7 : V— W is called a linear transformation if for
each x € Vthere is a unique vector 7(x) € W and so that

() T(w+p)=T(u)+ T(y) foralu,yEV

(1) T(cu)=cT(u) foralueV,ceR

Definition The kernel (or nullspace) of T is definedtobe {u € V': T(u) =0}.
Definition The rangeof T'is {w € W: w=T(») for somey € V} .

Theorem Let 7: V— W be a linear transformation. Then the kernel of T is a subspace of V. The range
of T is a subspace of W.

Remark: The theorem generalizes our earlier one about Nu/ 4 and Col A, for matrix transformations
T:Rr—>R"T(x)=A4x.



