
Definition:   A subspace of a vector space V is a subset H of V which is itself a vector space with respect 
to the addition and scalar multiplication in V.  As soon as one verifies a), b), c) below for H, it will be a 
subspace, because H will "inherit" the other axioms just by being contained in V.

a)  The zero vector of V is in H

b)  H is closed under vector addition, i.e. for each u H, v H   then u v H. 

c)  H is closed under scalar multiplication, i.e for each u H, c , then also c u H.

Just to double check that the other properties get inherited:
Definition  A vector space  is a nonempty set V of objects, called vectors, on which are defined two 
operations, called addition and scalar multiplication, so that the ten axioms listed below hold.  These 
axioms must hold for all vectors u, v, w in V, and for all scalars c, d .  

1.  The sum of u and v, denoted by u v, is (also) in V      (closure under addition.)

2.  u v = v u     (commutative property of addition)

3.  u v w = u v w    (associative property of addition)

4.  There is a zero vector 0 in V so that u 0 = u.    (additive identity)

5.  For each u V there is a vector u V so that u u = 0.   (additive inverses)

6.  The scalar multiple of u by c, denoted by c u is (also) in V.  (closure under scalar multiplication)

7.  c u v  = c u  c v      (scalar multiplication distributes over vector addition)

8.  c d  u = c u  d u.     (scalar multiplication distributes over scalar addition)

9.  c d u = c d  u    (associative property of scalar multiplication)

10.  1 u = u   (multiplicative identity)

The following three algebra rules follow from the first 10, and are also useful:

11)   0 u = u.

12)  c 0 = 0 .

13)  u = 1  u.



Big Exercise:  The vector space n has subspaces!  But there aren't very many kinds, it turns out.  (Even 
though there are countless kinds of subsets of n.)  Let's find all the possible kinds of subspaces of 3, 
using our expertise with matrix reduced row echelon form.
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          4.1-4.2  Vector spaces and subspaces;  null spaces, column spaces, and the connections to linear 
transformations

Announcements: 

Warm-up Exercise:



We've been discussing the abstract notions of vector spaces and subspaces, with some specific examples 
to help us with our intuition.  Today we continue that discussion.  We'll continue to use exactly the same 
language we used in Chapters 1-2  .... except now it's for general vector spaces:

Let V be a vector space  (Do you recall that definition, at least roughly speaking?)

Definition:  If we have a collection of p vectors v1, v2,  ... vp  in V, then any vector v V that can be 
expressed as a sum of scalar multiples of these vectors is called a linear combination of them.  In other 
words, if we can write

v = c1v1 c2v2  ... cpvp ,

then v is a linear combination of v1, v2,  ... vp .  The scalars c1, c2,..., cp are called the linear combination 
coefficients or weights.

Definition  The span of a collection of vectors, written as span v1, v2, ...  vp  , is the collection of all linear
combinations of those vectors.

Definition: 
a)  An indexed set of vectors  v1, v2,  ... vp  in V is said to be linearly independent if no one of the vectors
is a linear combination of (some) of the other vectors. The concise way to say this is that the only way 0 
can be expressed as a linear combination of these vectors,

c1v1 c2v2  ... cpvp = 0 ,
is for all of the weights c1 = c2 =... = cp = 0 .

b)  An indexed set of vectors  v1, v2,  ... vp  is said to be linearly dependent  if at least one of these 
vectors is a linear combination of (some) of the other vectors.  The concise way to say this is that there is 
some way to write 0 as a linear combination of these vectors

c1v1 c2v2  ... cp vp = 0 

where not all of the cj = 0 .  (We call such an equation a linear dependency.  Note that if we have any such 
linear dependency, then any vj with cj 0 is a linear combination of the remaining vk with k j .  We say
that such a vj is linearly dependent on the remaining vk .)



And from yesterday,

Definition:   A subspace of a vector space V is a subset H of V which is itself a vector space with respect 
to the addition and scalar multiplication in V.  As soon as one verifies a), b), c) below for H, it will be a 
subspace.

a)  The zero vector of V is in H

b)  H is closed under vector addition, i.e. for each u H, v H   then u v H. 

c)  H is closed under scalar multiplication, i.e for each u H, c , then also c u H.

Theorem  (spans are subspaces)  Let V be a vector space, and let v1, v2, ...  vn  be a set of vectors in V.  
Then H = span v1, v2, ...  vn  is a subspace of V.
proof:  We need to check that for H = span v1, v2, ...  vn

a)  The zero vector of V is in H 

b)  H is closed under vector addition, i.e. for each u H, v H   then u v H. 

c)  H is closed under scalar multiplication, i.e for each u H, c , then also c u H.



Remark  Using minimal spanning sets was how we were able to characterize all possible subspace of 3 
yesterday (or today, if we didn't finish on Tuesday).   Can you characterize all possible subsets of  n  in 
this way?

Example:  Let P
n
 be the space of polynomials of degree at most n, 

P
n

= p t = a0 a1 t a2 t2 ...  an tn such that a0, a1, ... an

Note that P
n
 is the span of the n 1  functions

p0 t = 1, p1 t = t, p2 t = t2, ...  pn t = tn.

Although we often consider P
n
 as a vector space on its own, we can also consider it to be a subspace of 

the much larger vector space V of all functions from  to .

Exercise 1  abbreviating the functions by their formulas, we have
P

3
 = span  1, t, t2, t3 .

Are the functions in the set  1, t, t2, t3  linearly independent or linearly dependent?.


