
Theorem:  Let An n .  Then A 1 exists if and only if det A 0 .

proof:  We already know that A 1 exists if and only if the reduced row echelon form of A is the identity 
matrix.  Now, consider reducing A to its reduced row echelon form, and keep track of how the 
determinants of the corresponding matrices change:  As we do elementary row operations,

   if we swap rows, the sign of the determinant switches.

   if we factor non-zero factors out of rows, we factor the same factors out of the determinants.

   if we replace a row by its sum with a multiple of another row, the determinant is unchanged.

Thus, 
         A  = c1 A1 = c1c2 A2 = ... = c1c2 ... cN rref A  

where the nonzero ck 's arise from the three types of elementary row operations.  If rref A = I its 
determinant is 1, and  A = c1c2 ... cN 0 .  If rref A I then its bottom row is all zeroes and its 
determinant is zero, so  A = c1c2 ... cN 0 = 0 .  Thus A 0 if and only if rref A = I if and only if 

A 1 exists !

Theorem:  Using the same ideas as above, we can show that det A B = det A det B .  This is an 
important identity that gets used, for example, in multivariable change of variables formulas for integration,
using the Jacobian matrix.  (It is not true that det A B = det A det B  .)  

Here's how to show det A B = det A det B : The key point is that if you do an elementary row 
operation to AB , that's the same as doing the elementary row operation to A , and then multiplying by B.  
With that in mind, if you do exactly the same elementary row operations as you did for A  in the theorem 
above, you get

  A B  = c1 A1B = c1c2 A2B = ... = c1c2 ... cN rref A B .

If rref A = I , then from the theorem above,  A = c1c2 ... cN , and we deduce A B = A B . If 
rref A I , then its bottom row is zeroes, and so is the bottom row of rref A B .  Thus A B = 0 and 
also A B = 0 .
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          3.3 adjoint formula for inverses, Cramer's rule, geometric meanings of determinants.

Announcements: 

Warm-up Exercise:



Theorem:  Let An n, and denote its cofactor matrix by cof A = Ci j  , with Ci j = 1 i jMi j, and 
Mi j =  the determinant of the n 1 n 1  matrix obtained by deleting row i and column j from A.  
Define the adjoint matrix to be the transpose of the cofactor matrix:

Adj A cof A T 
Then, when A 1 exists it is given by the formula

A 1 =
1

det A
Adj A  .

Exercise 1)  Show that in the 2 2 case this reproduces the formula
a b

c d
=

1
ad bc

d b

c a
  .



Example)  For our friend A =

1 2 1

0 3 1

2 2 1
 we worked out  cof A =

5 2 6

0 3 6

5 1 3
  so

A =

1 2 1

0 3 1

2 2 1
       adj A =

5 0 5

2 3 1

6 6 3
       det A = 15, 

so

A 1 =
1
15

 

5 0 5

2 3 1

6 6 3

Let's understand why the magic worked:

Exercise 2)  Continuing with our example, 
  

2a)  The 1, 1  entry of A Adj A  is 15 = 1 5 2 2 1 6  .  Explain why this is det A , 
expanded across the first row.

2b)  The 2, 1  entry of A Adj A  is 0 5 3 2 1 6 = 0.  Notice that you're using the same 
cofactors as in (2a).  What matrix, which is obtained from A by keeping two of the rows, but replacing a 
third one with one of those two, is this the determinant of?

2c)  The 3, 2  entry of A Adj A  is 2 0 2 3 1 6 = 0 .  What matrix (which uses two rows of A)
is this the determinant of?



If you completely understand 2abc, then you have realized why 
A Adj A = det A I   

for every square matrix, and so also why

A 1 =
1

det A
Adj A  .

Precisely,
 entryi i A Adj A = rowi A coli Adj A = rowi A rowi cof A = det A ,

 expanded across the ith row.  

On the other hand, for i k, 
entryk i A Adj A = rowk A coli Adj A = rowk A rowi cof A  .

This last dot produce is zero because it is the determinant of a matrix made from A by replacing the ith row 
with the kth row, expanding across the ith row, and whenever two rows are equal, the determinant of a 
matrix is zero:

  ith row position  

   
1
   

 
2 

  

  
k
    

   
k
    

   
n
   

.



There's a related formula for solving for individual components of x when A x = b has a unique solution (
x = A 1b ).  This can be useful if you only need one or two components of the solution vector, rather than 
all of it:

Cramer's Rule:  Let x solve A x = b , for invertible A.  Then

xk =
det Ak

det A
 

where Ak is the matrix obtained from A by replacing the kth column with b.  

proof:  Since x = A 1b  the kth component is given by
xk = entryk A 1b  

= entryk
1
A

Adj A b   

=
1
A

rowk Adj A b  

=
1
A

colk cof A b .

Notice that colk cof A b is the determinant of the matrix obtained from A by replacing the kth column 

by b, where we've computed that determinant by expanding down the kth column! This proves the result.  
(See our text for another way of justifying Cramer's rule.)

Exercise 3)  Solve 
5 1

4 1

x

y
=

7

2
 .

3a)  With Cramer's rule
3b) With A 1, using the adjoint formula.
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Due Tuesday February 20

Spend the rest of today's class period working through these problems.  I encourage you to work with 
your classmates and discuss the problems.  If you are finished with the assignment at the end of class 
today, then you can turn it in today.  If you would like to work on the assignment more, take it home over 
the weekend and turn it in on Tuesday.  This assignment will be graded for effort (which means that you 
have written down thoughtful, complete solutions to each problem), not correctness.  Solutions to these 
problems will be posted on Canvas Tuesday for future reference.

Let's explore what determinants have to do with linear transformations from 2 to 2 (generalizes to the 
case of linear transformations from n to n), and with affine transformations, which are compositions of 
translations and linear transformations.  So for today, we'll be thinking about functions of the form

F
x

y
=

a c

b d

x

y

e

f
 

which transform 2 to 2.  Since

F
0

0
=

e

f

F
1

0
=

a

b

e

f

F
0

1
=

c

d

e

f
,

You can reconstruct the formula for the affine function as soon as you know the images of 0, e1, e2 .  For 
example,  I reconstructed the transformation formula for Giant Bob in the upper right corner of the next 
page.  Notice that Giant Bob has six times the area of original Bob - since original Bob can be filled up 
with different-sized squares, and the images of those squares will be rectangles having six times the 
original areas.

1)  Reconstruct the formulas for at least three more of the six (non-identity) transformations of Bob on the 
next page, and comment on how the areas of the transformed Bobs are related to the determinants of the 
matrices in the transformations.  Note that the Bob in the lower right corner got flipped over.





2)  Find the formulas for these two affine transformations of Bob.

3)  Squares in original Bob get transformed into parallelegrams in the image Bobs, and the area expansion 
factors are independent of the size of the original squares.  So,  you can deduce the area expansion factor 
for the image Bobs just by computing the area of the parallegram image of the unit square.  How do your 
area expansion factors in these two examples compare to the matrix determinants from the affine 
transformations?



We'll talk more systematically about area/volume expansion factors, and in arbitrary dimension on 
Tuesday, but for affine transformations from 2 2 one can use geometry to connect determinants to 
area expansion factors.  

4)   Can you compute the area of the parallelgram below (in terms of the letters a, b, c, d )?  Since 
translations don't effect area, this will give the area expansion factor also for the images of arbitrary 
regions, under affine transformations

F
x

y
=

a c

b d

x

y

e

f
 .

Hint: Start with the area of the large rectangle of length a c and height b d, then subtract off the areas 
of the triangles and rectangles on the outside of the parallelgram.  For convenience I chose the case where 
all of a, b, c, d are positive, and where the transformation didn't "flip" the parallelgram:


