
Wed Feb 14
          3.2 properties of determinants

Announcements: 

Warm-up Exercise:



The effective way to compute determinants for larger-sized matrices without lots of zeroes is to not use the 
definition, but rather to use the following facts, which track how elementary row operations affect 
determinants:
     (1a)  Swapping any two rows changes the sign of the determinant.

             proof:  This is clear for 2 2 matrices, since
a b

c d
= ad bc,          

c d
a b = cb ad .

               For 3 3 determinants, expand across the row not being swapped, and use 
               the 2 2 swap property  to deduce the result.  Prove the general result by induction:  
               once it's true for n n matrices you can prove it for any n 1 n 1  matrix, 
               by expanding across a row that wasn't swapped, and applying the n n result.

         (1b)   Thus, if two rows in a matrix are the same, the determinant of the matrix must be zero:  
                on the one hand, swapping those two rows leaves the matrix and its determinant unchanged;
                on the other hand, by (1a) the determinant changes its sign.  The only way this is possible
                is if the determinant is zero.



       (2a)   If you factor a constant out of a row, then you factor the same constant out of the determinant.
                Precisely, using 
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 for ith row of A , and writing 
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              proof:  expand across the ith row,  noting that the corresponding cofactors don't 
              change, since they're computed by deleting the ith row to get the corresponding minors:

det A =
j = 1

n

ai jCi j =
j = 1

n

c ai j
* Ci j = c

j = 1

n

ai j
* Ci j = c det A*  .

         

         (2b)  Combining (2a) with (1b), we see that if one row in A is a scalar multiple 
              of another, then det A = 0 .



       (3)  If you replace row i of A, 
i
  by its sum with a multiple of another row, say 

k
  then the 

              determinant is unchanged!  Expand across the ith row:
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= det A 0 .

Remark:  The analogous properties hold for corresponding "elementary column operations".  In fact, the 
proofs are almost identical, except you use column expansions.



Exercise 1)  Recompute 

1 2 1

0 3 1

2 2 1
 from yesterday (using row and column expansions we always got 

an answer of 15 then.)  This time use elementary row operations (and/or elementary column operations).

Exercise 2)  Compute 

1 0 1 2

2 1 1 0

2 0 1 1

1 0 2 1

 .



Theorem:  Let An n .  Then A 1 exists if and only if det A 0 .

proof:  We already know that A 1 exists if and only if the reduced row echelon form of A is the identity 
matrix.  Now, consider reducing A to its reduced row echelon form, and keep track of how the 
determinants of the corresponding matrices change:  As we do elementary row operations,

   if we swap rows, the sign of the determinant switches.

   if we factor non-zero factors out of rows, we factor the same factors out of the determinants.

   if we replace a row by its sum with a multiple of another row, the determinant is unchanged.

Thus, 
         A  = c1 A1 = c1c2 A2 = ... = c1c2 ... cN rref A  

where the nonzero ck 's arise from the three types of elementary row operations.  If rref A = I its 
determinant is 1, and  A = c1c2 ... cN 0 .  If rref A I then its bottom row is all zeroes and its 
determinant is zero, so  A = c1c2 ... cN 0 = 0 .  Thus A 0 if and only if rref A = I if and only if 

A 1 exists !

Theorem:  Using the same ideas as above, we can show that det A B = det A det B .  This is an 
important identity that gets used, for example, in multivariable change of variables formulas for integration,
using the Jacobian matrix.  (It is not true that det A B = det A det B  .)  

Here's how to show det A B = det A det B : The key point is that if you do an elementary row 
operation to AB , that's the same as doing the elementary row operation to A , and then multiplying by B.  
With that in mind, if you do exactly the same elementary row operations as you did for A  in the theorem 
above, you get

  A B  = c1 A1B = c1c2 A2B = ... = c1c2 ... cN rref A B .

If rref A = I , then from the theorem above,  A = c1c2 ... cN , and we deduce A B = A B . If 
rref A I , then its bottom row is zeroes, and so is the bottom row of rref A B .  Thus A B = 0 and 
also A B = 0 .


