
Math 2270-004  Week 13 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  6.4-6.8 

Mon Apr 9
       6.4   Gram Schmidt and A = QR decomposition.  Orthogonal matrices

Announcements: 

Warm-up Exercise:

 



We begin on Monday with a continuation of the discussion of Gram-Schmidt orthogonalization from 6.4.  
Keeping track of the G.S. process carefully yields the A = QR matrix product decomposition theorem, 
where Q is an "orthogonal matrix" consisting of an orthonormal basis for the span of the columns of A and
R is an upper triangular matrix with positive entries along the diagonal.  This decomposition is one way to 
understand why matrix determinants correspond to  Volumes, in n, among other uses.  

Section 6.5, Least square solutions is about finding approximate solutions to inconsistent matrix 
equations, and relies on many of the ideas we've been studying in Chapter 6 up to this point.  

Section 6.6, Applications to linear models, is an application of the least squares method to e.g. linear 
regression in statistics.  

Finally, sections 6.7 and 6.8 generalize our orthogonality discussions that began with the dot product, to
inner products in other vector spaces such as function spaces.  These ideas lie at the heart of physics 
applications that use Fourier series, and more recent applications such as image and audio compression.



Recall the Gram-Schmidt process from Friday:

Start with a basis B  = w1, w2, ... wp  for a subspace W of n.   How can you convert it into an 
orthonormal basis?  Here's how!  The inductive process is called Gram-Schmidt orthogonalization.

Let W1 = span w1 .  Define  u1 = 
w1

w1
.  Then u1  is an orthonormal basis for W1.

Let W2 = span w1, w2 = span u1, w2 .

     Let z2 = w2 projW
1
w2 =  w2 w2 u1 u1  so z2 u1.

     Define u2 = 
z2
z2

.   So u1, u2  is an orthonormal basis for W2.

Inductively,

Let  Wj = span w1, w2, ... wj  = span u1, u2,  ...  uj 1, wj .

     Let zj = wj  projW
j 1

wj  = wj  wj u1 u1   wj u2 u2    ... wj uj 1 uj 1    .

...so  zj  span u1, u2, ... uj 1 .

     Define  uj = 
zj
zj

.   Then u1, u2, ... uj   is an orthonormal basis for Wj .

Continue up to j = p.



We're denoting the original basis for W by B  = w1, w2, ... wp .  Denote the orthonormal basis we've 
constructed with Gram-Schmidt by O = u1, u2, ... up  .  Because O is orthonormal it's easy to express 
these two bases in terms of each other.  Notice

Wj = span w1, w2, ... wj  =  span u1, u2, ... uj       for each 1 j p.

So,

w1 = w1 u1 u1 

w2 = w2 u1 u1  w2 u2 u2 
:

wj = wj u1 u1  wj u2 u2  ....   wj uj uj 
:

wp =
l = 1

p

wl ul ul  .

Notice that the coefficients of the last terms in the sums above, namely wj uj  can be computed as

wj uj = zj
zj
 zj

=  zj .

In matrix form (column by column) we have

Thus any matrix with linearly independent columns may be written in factored form as above, (
W = Col A ,

An p = Qn p Rp p.

This factorization contains geometric information and can simplify the computational work needed to solve
matrix equations A x = b.



From previous page...
                An p = Qn p Rp p

shortcut  (or what to do if you forgot the formulas for the entries of R)  If you just know Q you can 
recover R by multiplying both sides of the  equation on the previous page by the transpose  QT of the Q 
matrix:

A = Q R
QTA = QTQ R = I R = R.  

Example)   From last Friday, 

B = 
1

1
,  

0

4
,   O = 

1

2
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2
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2
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  .

1 0

1 4
 =  

1

2

1
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2

w1 u1 w2 u1

0 w2 u2
 = 

1

2

1

2
1

2

1

2

2 2 2

0 2 2
 = Q R .

Exercise 1)   Verify that R could have been recovered via the formula 
QT A = R



From previous page ...

1 0

1 4
 =  

1

2

1

2
1

2

1

2

2 2 2

0 2 2
.

Exercise 2)  Verify that the A = Q R factorization in this example may be further factored as

 
1 0

1 4
= 

1

2

1

2
1

2

1

2

2 0

0 2 2

1 2

0 1
.

   So, the transformation T x  = A x is a composition of (1) an area-preserving shear, followed by (2) a 

diagonal scaling that increases area by a factor of 2 2 2 = 4, followed by a rotation of 
4

, which does

not effect area.  Since determinants of products matrices are the products of determinants (we checked this 
back when we studied determinants), and area expansion factors of compositions are also the products of 
the area expansion factors, the generalization of this example explains why the determinant of A (or its 
absolute value in general) coincides with the area expansion factor, in the 2 2 case.  You show in your 
homework that the only possible Q matrices in the 2 2 case are rotations as above, or reflections across 
lines through the origin.  In the latter case, the determinant of Q is 1, and the determinant of A is negative.



Example from last Friday.
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Exercise 3a  Find the A = Q R factorization based on the data above, for 

A = 

1 0 1

1 4 2

0 0 3

solution A =
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Exercise 3b  Further factor R into a diagonal matrix times a volume-preserving shear and interpret the 
transformation T x  = A x as a composition of (1) a volume preserving shear, followed by (2) a 
coordinate scaling that increases volume by a factor of 12, followed by a rotation about the x3 axis in 3, 
which preserves volume.  The generalization of this example explains why the determinant of A (or its 
absolute value in general) is the volume expansion factor for the transformation T x = A x.



Definition  A square n n matrix Q is called orthogonal if its columns are ortho-normal.  (You can read 
more about orthogonal matrices at e.g. Wikipedia.)

Theorem.  Let Q  be an orthogonal matrix.  Then
a)  Q 1 = QT.   

b)   The rows of Q are also ortho-normal.

c)   the transformation T : n n given by 
T x  = Q x

preserves dot products and magnitudes, (so also volumes, since cubes generated by perpendicular vectors 
will be transformed into equal-volume cubes).  In other words, for all x, y n, 

T x T y  = x  y  

T x = x .

d)  The only matrix transformations T : n n that preserve dot products are orthogonal transformations.
 (These transformations are often referred to as isometries.)


