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Exercise 1
la) Check that the set
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is an orthonormal basis for R3.
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1b) Forx=| 2 | find the coordinate vector [x]g and check your answer.
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Remark: A basis {21,22,

perpendicular, but not necessarily normalized to unit length. One can construct an orthonormal basis from
that set by normalizing, namely

2, } € R is called orthogonal if the the vectors in the set are mutually
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One can avoid square roots if one uses the original orthogonal mau?g\;-?ather than the ortho-normal one.
This is the approach the text prefers. For example, for orthogonal bases, the very good basis theorem
reads

Theorem (why orthogonal bases are very good bases): Let B= {v ,» ,...,» 1| & R” be orthogonal. Let
1’ =2 -

W= span{gl,zz, ,zp} Then

a) { AL USSR zp} is linearly independent, so a basis for .
b) Forw € W,
I A P e R a2
¢ m:—(21°&2)21+—(22°m) yz—i-...-l——(zp.&) Y, (Md—”s)
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¢) Letx & R". Then there is a unique nearest point to x in /¥, which we call proj,, x, ("the projection of

xonto W.") The formula for this projection is given by

¢ projyx= (it x)uy (it X)U, ot (1,0 X),
V. X V,*X y =X

[ pl”OjW_= ( 1 ) ' (_2 2) 22+ L+ (_P 2) Zp
2 | | A

You can see how that would have played out in the previous exercise.
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3 0
la) Let L = span inR2. Letx= s | Compute proj, X .
) -
FVOA' 2 =X &
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1c) Make a sketch which illustrates your work in parts a,b. It should include the Tine Z, the points with
position vectors x, proj X, and the vector z from proj X 10X
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+  6.3-6.4 Gram-Schmidt/process for constructing ortho-normal (or orthogonal) bases. The
A = Q R matrix factorization.
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Start with a basis B = {ml, W, ... mp} for a subspace W of R”. How can you convert it into an

orthonormal basis? Here's how! The inductive process is called Gram-Schmidt orthogonalization.

Let W1 = span {ml } Define u = ” w H . {ll } is an orthonormal basis for Wl'

2 _:,' W,
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Let W, = span {&1, w, }
Letz,2 =W, —projwmz, S0 Z, 1 u,.
1
Deﬁneg2 =— So {gl, lz} is an orthonormal basis for WZ'
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Let W, = span{

Let i, =W,

Define u,=

Inductively,

Let W] = span {&

Let% w.

Define gj =

Continue up to j

w2y, )

—projW w,, soz, 1 Wz'
. Then { Uy, U,

| 3||

W %} =span{g1,
“proly e (m
& Then {gl,%,

1%l

=p.

} is an orthonormal basis for W3.
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u} is an orthonormal basis for . .
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Exercise 1 Perform Gram-Schmidt orthogonalization on the basis
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Sketch what you're doing, as you do it. — — [0, k{\--
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Exercise 2 Perform Gram-Schmidt on the basis
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This will proceed as in Exercise 1 until the third step, i.e.
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