Theorem (fill in details). 1€pSn-1 , 0¢psn
la) Let W = R* be asubspace withdim W=p, 1 < p < n

dim(W) + dim(W+)=n
Hint: Use reduced row echelon form ideas.
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Hint: Show W & (W) . Then count dimensions.
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1d) Let B = {El’&z’ ...ﬁp}beabasis for W and C= {zl,zz, L, }beaba81s for W+ . Then
their union, B U C, is a basis for R". —) v W = Iwmn (\.\) L)
Hint: Show B U C is linearly independent. {>M_\, W C L\N .L)
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Remark: From the discussion above, a@: m X n matrix 4 of arbitrary rank p, we can deduce fro%\j~
Nul 4;

the discussion above that (Row A4) o (Nul A) + = Row 4; from our previous work we know z
that dim (Row AY= p, §im (Nul A) = n — p. This decomposes the domain of the linear transformation
T:Ri—Rm, Ak

RMAL: v l V-RafA)= 0, = l;(-x;ijx
=Nl A o

By the same reasoning applied to the transpose transformation from R”— R”, the codomain of 7

decomposes into Col 4 = Row A" and (ColA)+ = Nul A", with dim (ColA) =p and

dim (Nul AT) =m — p. In other words, we have justified the diagram we really only waved our hands
at back in Chapter 4, except for transformations from R2 — R2.
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Exercise 2) In Exercise 1 with W=spani{|(1)|, | 0 |i, weshowed W+ =span {| -5 || Compute
3 1

(W)L as Nul [ 2 =51 ]and verify that it recovers ¥ (but with a different basis).
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Wed Apr 4
6.2-6.3 very good bases revisited: orthogonal and orthonormal bases. Projection onto multi-

dimensional subspaces.
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Definition: The set { u i, } € R~ is called orthonormal if and only if

woouw=1,i=1,2.p lw; 1=\

=1

1° lza

u.u=0 i y
So this is a set of unit vectors that are mutually orthogonal. ™ It turns out that they make very good bases
for p - dimensional subspaces W.
BAQ $ WlMcL AL W\la Or‘Hw

AL alSo ?(0"0 OL.
Examples you know already:
1) The standard basis {gl, &, o gn} € [R~, or any subset of the standard basis VG(}E(‘)I‘S.
e, e i = =J
O V&

) cos O -sin o J

2) Rotated bases in R-. {21’%}: ' , .
sin o, COoS O

Theorem (why orthonormal sets are very good bases): Let B = { WUy, oo s U } € [R” be orthonormal.

Let W=span{g1,g2, ,gp} Then
a) { Wy Uy, oo s U } is linearly independent, so a basis for V.
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b) Forw € W, the coordinate vector [w]g is directly computable. In other WOI’dSJ
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¢) Letx € R". Then there is a unique nearest point to x in ¥, which we call proj,, x, ("the projection of

Xxonto W.") The formula for this projection is given by

W

proijz (gl -g)gl + (12 ’&)lz + ...+ (lp

(As should be the case, projection onto # leaves elements of I fixed.)
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Proof: We will use the Pythagorean Theorem to show that the formula above for proj,, x yields the

nearest point in Wto x :

Define

) ZTx - (X)) - (B cx)uy - (B, Xl
Then forj=1,2, ... p, \g
L ay=xes cxeu,=0.
ZEeW
Soz 1L W, 1ie.
Z- (t1l1+t2£2+ tplp)ZO

for all choices of the weight vector £ .

Letw € W. Then

lx—w|®= || (x — projx ) + (proj,x -w)||* .
wiI™= | ( pl) T (projgx —w) |

-~

Z
Since (x — projux ) = z and since ( Proj X ~w ) € W, we haweé the Pythagorean Theorem

Il = )] = || £ = projyx || + [projy -
e — i = || 2 |* + |[proj,x -w|f -

So|k — &HZ is always at least || z || 2. with equality if and only if w = proj, x.
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Exercise 1
la) Check that the set

2 1 -2
1 1 1
B=1—|2| =| 2] =] 1
3 "3 * 3

1 2 2

is an orthonormal basis for R3.

1
1b) Forx=| 2 | find the coordinate vector [x]g and check your answer.
3
3
solution [x]g = | 1

2



Exercise 2 Consider the plane from Tuesday Vi vy 1 A
1 1 W™=z rah { ‘ﬂ
W=spani| 1 |, | O
3 -2
which is also given implicitly as a nullspace, ['1 s 1) [: =0
3

2a) Verify that

is an ortho-normal basis for W.

7
2b) Find proj,x forx=| - 3 |. Then verify that z=x - proj X is perpendicular to W.
1
5
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Remark: A basis {21,22,

perpendicular, but not necessarily normalized to unit length. One can construct an orthonormal basis from
that set by normalizing, namely

2, } € R is called orthogonal if the the vectors in the set are mutually

PR T B e e T .
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One can avoid square roots if one uses the original orthogonal matrix rather than the ortho-normal one.
This is the approach the text prefers. For example, for orthogonal bases, the very good basis theorem
reads

Theorem (why orthogonal bases are very good bases): Let B= {v ,» ,...,» 1| & R” be orthogonal. Let
1’ =2 -

W= span{gl,zz, ,zp} Then

a) { AL USSR zp} is linearly independent, so a basis for .
b) Forw € W,
= (i )iy (i )+ ()i
Y. w Y, *w Yy *w
po G2 () sz
|| |2 |5

¢) Letx & R". Then there is a unique nearest point to x in /¥, which we call proj,, x, ("the projection of

xonto W.") The formula for this projection is given by

projyx= (= x)u, + (i, =Xy, + o+ (1, x)n,
V. X V,*X y =X

I i B IR 2>Xp_
2 | | A

You can see how that would have played out in the previous exercise.



