2h) Refer to the same diagram as in 2g, which is an R” picture. Using the Pythagorean triangle with
edges (x*u)u, z, x we have

I (x )||2+||z||2—\|x|ﬂ 0

Define the angle 6 between y and w the same ANay we would in R2, namely

Notice that because of the Pythagorean identity above, -1 < cos(0) < 1, with cos(0) = 1 if and only if
(x+w)u=x andcos(0) =-1ifand only if (x * w)u = -x. So there is a unique O with 0 < 6 < 7 for

whic the cos 0 equation can hold. Substituting u = gives the familiar formulas that you learned in
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multivariable Calculus for R2?, R3, which now holds in R”.

COS

_ (X ||§||) _ (x-y)
(6) ] TR

- ®RWR) W = (XR) -G =0

Z:
— 2= (
‘/’7?",‘]'/; o 242 =0 Vi
= L

- lou’v, - J\I"é fn We WRo@ = 03n + 1 - o’
\o , ; “,,n.,_
S‘\‘AJ!'S\- 1/, 7112
] O<6< 2 :”i’l(l(;{ w:(i););i
C \ ’ 1,2,
%. "3"’}3)» ) 0)7- N’%  orvelatia, we o, _17\~ kéT\
. - heq: Lov L\,\ak\_\j Pos\*vz!th 4




XK 9
C = w8 fn [x;-g W
: " 4Ry
XX ‘
2 3 N
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6.1-6.2 Orthogonal complements to subspaces, and the four fundamental subspace theorem

revisited.
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Orthogonal complements, and the four subspaces associated with a matrix transformation, revisited more
carefully than our first time through.

Let W = R” be a subspace of dimension 1 < p < n. The orthogonal complement to W is the collection
of all vectors perpendicular to every vector in . We write the orthogonal complement to ¥ as W_l , and
say "W perp". Let B = { be a basis for . Lety € W + . This means

w,w, mp}

<cw

" +czm2+...—|—cpw )-EZO

P

for all linear combinations of the spanning vectors. Since the dot product distributes over linear
combinations, the identity above expands as

< (&1 -y) + cz(m2 -z) + ...+ cp(
for all possible weights. This is true if and only if

In other words, vy € Nul A where A is the m x n matrix having the spanning vectors as rows:
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So
WL =NulA.
1 1
Exercise | Find W+ for W=span{| 1 |, | O
3 -2
Lo 1. [o -\ O 2|0
(10—1\5\[& ° L Ae
. (2
\, = span | |-
[ « 3% |o L
| o -2 {0 cmw[l].l.ﬂw—uw:o
Il %3 | O 3 y
- O - =510 |
R4RPN, \ ! :AS B
L3 o -2 \
o 1 s| O



Theorem (fill in details). 1€pSn-1 , 0¢psn
la) Let W = R* be asubspace withdim W=p, 1 < p < n

dim(W) + dim(W+)=n
Hint: Use reduced row echelon form ideas.
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1d) Let B = {&1’&2’ mp} be a basis for W and C= {zl,zz, -z, _p} be a basis for W + . Then

\
their union, B U C, is a basis for R". _— Lowe W = R (\'\) L)
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Remark: From the discussion above, and for any m x n matrix A of arbitrary rank p, we can deduce from
the discussion above that (Row A) + = Nul 4; so (Nul A) - = Row A; from our previous work we know

that dim (Row A) = p, dim (Nul A) = n — p. This decomposes the domain of the linear transformation
T:Rr—Rm,

T(x) =Ax.

By the same reasoning applied to the transpose transformation from R”— R”, the codomain of 7
decomposes into Col 4 = Row A" and (ColA)+ = Nul A", with dim (ColA) =p and

dim (Nul AT) =m — p. In other words, we have justified the diagram we really only waved our hands
at back in Chapter 4, except for transformations from R2 — R2.

c(A") C(A)
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Exercise 2) In Exercise | with W=span{| 1 |, | 0 |i, weshowed W+ =span {| -5 || Compute
3 -2 1
(W)L as Nul [ 2 =51 ]and verify that it recovers ¥ (but with a different basis).
.
—
iv, Vi Vo
['2 -S }] 2y — O
X, i \ 2.5 =5
Ty Q;\} w S srm\ L | ] o
0 l
2 -5 U |o
- D
L 25 .S ‘O W, 27,
-
2,= '25{;,7_"-'5{:1, W‘:\\T:.
2, = 2 2.5 -5
21: 'i-z ‘I; + ‘t'v, /‘
y° 1 o)
Ly W



