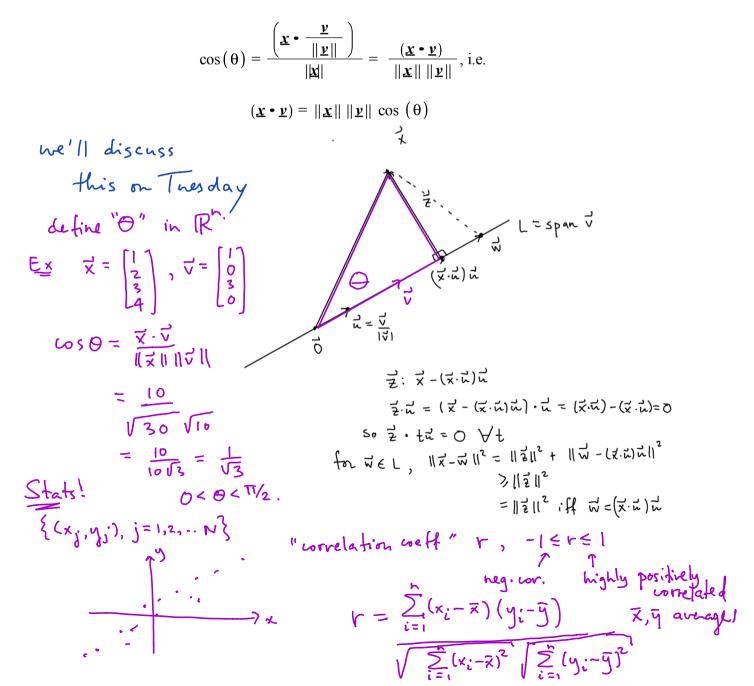
<u>2h</u>) Refer to the same diagram as in <u>2g</u>, which is an \mathbb{R}^n picture. Using the Pythagorean triangle with edges $(\underline{x} \cdot \underline{u})\underline{u}, \underline{z}, \underline{x}$ we have

$$\| (\underline{x} \cdot \underline{u})\underline{u} \|^2 + \|\underline{z}\|^2 = \|\underline{x}\|^2.$$

Define the angle θ between <u>v</u> and <u>w</u> the same way we would in \mathbb{R}^2 , namely

$$\cos(\theta) = \frac{(\underline{x} \cdot \underline{u})}{\|\underline{x}\|}.$$

Notice that because of the Pythagorean identity above, $-1 \le \cos(\theta) \le 1$, with $\cos(\theta) = 1$ if and only if $(\underline{x} \cdot \underline{u})\underline{u} = \underline{x}$ and $\cos(\theta) = -1$ if and only if $(\underline{x} \cdot \underline{u})\underline{u} = -\underline{x}$. So there is a unique θ with $0 \le \theta \le \pi$ for whice the $\cos \theta$ equation can hold. Substituting $u = \frac{v}{\|v\|}$ gives the familiar formulas that you learned in multivariable Calculus for \mathbb{R}^2 , \mathbb{R}^3 , which now holds in \mathbb{R}^n .



$$r = \cos \Theta \quad \text{for} \quad \begin{bmatrix} x_1 - \hat{x} \\ x_2 - \hat{x} \end{bmatrix}, \quad \begin{bmatrix} y_1 - \hat{y} \\ y_2 - \hat{y} \end{bmatrix}$$
3) Summary exercise In \mathbb{R}^2 , let $L = span \left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$. Find $proj_L \begin{bmatrix} 3 \\ 4 \end{bmatrix}$. Illustrate. Verify the Pythagorean Theorem for $proj_L \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, " \underline{x} " and hypotenuse $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$.

$$Proj_{L}\vec{X} = (\vec{X}\cdot\vec{n})\vec{n} \qquad \vec{V} = \begin{bmatrix} 2\\1 \end{bmatrix}, \vec{n} = \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\1 \end{bmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} 3\\4 \end{bmatrix} \cdot \begin{bmatrix} 2\\1 \end{bmatrix} \end{pmatrix} \frac{1}{\sqrt{5}} \begin{bmatrix} 2\\1 \end{bmatrix}$$

$$= \frac{1}{5} \begin{pmatrix} 3\\4 \end{bmatrix} \cdot \begin{bmatrix} 2\\1 \end{bmatrix} \end{pmatrix} \begin{bmatrix} 2\\1 \end{bmatrix}$$

$$= \frac{10}{5} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix} \qquad x_{2}$$

$$= \frac{10}{5} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix} \qquad x_{2}$$

$$= \frac{10}{5} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix} \qquad x_{3}$$

$$= \frac{10}{5} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix} \qquad x_{4}$$

$$= \frac{10}{5} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix} \qquad x_{4}$$

$$= \frac{10}{5} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix} \qquad x_{4}$$

$$= \frac{10}{5} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix} \qquad x_{4}$$

$$= \frac{10}{5} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 4\\2 \end{bmatrix} \qquad x_{4}$$

$$= \frac{10}{5} \begin{bmatrix} 2\\1 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} 1\\2 \end{bmatrix} = \begin{bmatrix} -1\\2 \end{bmatrix} = \begin{bmatrix} -1\\2 \end{bmatrix} = \begin{bmatrix} -1\\2 \end{bmatrix} = \begin{bmatrix} -1\\2 \end{bmatrix} = \begin{bmatrix} 2\\1 \end{bmatrix} = 0$$

Tues Apr 3

• 6.1-6.2 Orthogonal complements to subspaces, and the four fundamental subspace theorem revisited.

Orthogonal complements, and the four subspaces associated with a matrix transformation, revisited more carefully than our first time through.

Let $W \subseteq \mathbb{R}^n$ be a subspace of dimension $1 \le p \le n$. The *orthogonal complement to* W is the collection of all vectors perpendicular to every vector in W. We write the orthogonal complement to W as \underline{W}^{\perp} , and say "W perp". Let $B = \{\underline{w}_1, \underline{w}_2, \dots, \underline{w}_p\}$ be a basis for W. Let $\underline{v} \in W^{\perp}$. This means

$$\left(c_1 \mathbf{w}_1 + c_2 \,\underline{\mathbf{w}}_2 + \dots + c_p \,\underline{\mathbf{w}}_p\right) \cdot \underline{\mathbf{v}} = 0$$

for all linear combinations of the spanning vectors. Since the dot product distributes over linear combinations, the identity above expands as

$$c_1(\underline{w}_1 \cdot \underline{v}) + c_2(\underline{w}_2 \cdot \underline{v}) + \dots + c_p(\underline{w}_p \cdot \underline{v}) = 0$$

for all possible weights. This is true if and only if

$$\underline{w}_1 \cdot \underline{v} = \underline{w}_2 \cdot \underline{v} = \dots = \underline{w}_p \cdot \underline{v} = 0.$$

In other words, $\underline{v} \in Nul A$ where A is the $m \times n$ matrix having the spanning vectors as rows:

$$A \underline{v} = \begin{bmatrix} \underline{w}_1^T & \\ \underline{w}_2^T & \\ \vdots & \\ \underline{w}_p^T & \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \underline{\mathbf{0}}.$$

So

$$W^{\perp} = Nul A.$$

Exercise 1 Find
$$W^{\perp}$$
 for $W = span \left\{ \begin{bmatrix} 1\\ 1\\ 3 \end{bmatrix}, \begin{bmatrix} 1\\ 0\\ -2 \end{bmatrix} \right\}$.

$$\begin{pmatrix} 1 & 1 & 3\\ 1 & 0 & -2 \end{bmatrix} \left(\overrightarrow{v} \right)^{-1} \begin{bmatrix} 0\\ 0 \end{bmatrix} \xrightarrow{-R_{2}+R_{1}} 1 & 0 & -2 \end{bmatrix} \begin{pmatrix} 0\\ 0 & 1 & 5 \end{bmatrix} \begin{pmatrix} 0\\ 0 & 0 & 1 & 5 \end{bmatrix} \begin{pmatrix} 0\\ 0 & 0 & 1 & 5 \end{bmatrix} \begin{pmatrix} 2\\ -5\\ 1 & 0 & -2 \end{pmatrix}$$

$$\frac{1}{1} 1 & 3 & 0 \\ 0 & 1 & 5 & 0 \end{pmatrix} \xrightarrow{-R_{1}+R_{2}-R_{2}} \begin{pmatrix} 0 & -2\\ 0 & 0 & 1 & 5 \\ 1 & 0 & -2 & 0 \\ \hline 1 & 1 & 3 & 0 \\ 0 & 1 & 5 & 0 \end{pmatrix} \xrightarrow{-R_{1}+R_{2}-R_{2}} \begin{pmatrix} 0\\ -2\\ 1 & 0 & -2 & 0 \\ \hline 1 & 1 & 3 & 0 \\ 0 & 1 & 5 & 0 \end{pmatrix} \xrightarrow{-R_{1}+R_{2}-R_{2}-S+3=0} \begin{bmatrix} 1\\ 0\\ -2\\ 1 & 0 & -2 & 0 \\ \hline 1 & 0 & 0 & -2 & 0 \\ \hline 1 & 0 & 0 & -2 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\ \hline 1 & 0 & 0 & 0 \\$$

Theorem (fill in details).

<u>1a</u>) Let $W \subseteq \mathbb{R}^n$ be a subspace with dim W = p, $1 \le p \le n$. Then dim $(W^{\perp}) = n - p$, so $dim(W) + dim(W^{\perp}) = n$

Hint: Use reduced row echelon form ideas. $\begin{array}{ccc} (a + A = \begin{bmatrix} \vec{w}_{1}^{T} \\ \vec{w}_{2}^{T} \\ \vdots \\ \vec{w}^{T} \end{bmatrix} \right\} P$

<u>1b</u>) W

Hint: Use reduced row echelon form ideas.

$$(a + A = \left\{ \begin{array}{c} \vec{w}_{1}^{T} \\ \vec{w}_{2}^{T} \\ \vec{w}_{p}^{T} \end{array} \right\} P$$

$$rref(A) has p pivots$$

$$o + hannise elementary row ops$$

$$o + hannise elementary row ops$$

$$would've weated a basis for W$$

$$with
$$W^{\perp} = NulA, dim(NulA) = n-p$$

$$W^{\perp} = 0$$

$$K \cdot \vec{x} = 0$$

$$Example = 0$$

$$K \cdot \vec{x} = 0$$$$

 $\langle N \rangle$

but WC(WL)

Since dim's are = $W = (W^{\perp})^{\perp}$

(the q-dim'l subspace

of q-dim'l vectorspace is entire vector space)

$$\underline{1c}) \quad (W^{\perp})^{\perp} = W.$$

Hint: Show $W \subseteq (W^{\perp})^{\perp}$. Then count dimensions.

$$\vec{u} \in (W^{\perp})^{\perp} \text{ means } \vec{u} \cdot \vec{z} = 0 \quad \forall \vec{z} \in W^{\perp}$$

$$\text{if } \vec{w} \in W, \text{ and } \vec{z} \in W^{\perp} \text{ then } \vec{w} \cdot \vec{z} = 0$$

$$\text{so } \vec{w} \in (W^{\perp})^{\perp} \quad \text{dim } W + \text{dim } W^{\perp} = n$$

$$\implies \text{dim } W^{\perp} + (\text{dim } W^{\perp})^{\perp} = n$$

<u>1d</u>) Let $B = \{\underline{w}_1, \underline{w}_2, \dots, \underline{w}_p\}$ be a basis for W and $C = \{\underline{z}_1, \underline{z}_2, \dots, \underline{z}_{n-p}\}$ be a basis for W^{\perp} . Then \implies dim W = dim (W^L)^L their union, $B \cup C$, is a basis for \mathbb{R}^n .

Hint: Show $B \cup C$ is linearly independent.

<u>Remark</u>: From the discussion above, and for any $m \times n$ matrix A of arbitrary rank p, we can deduce from the discussion above that $(Row A)^{\perp} = Nul A$; so $(Nul A)^{\perp} = Row A$; from our previous work we know that dim (Row A) = p, dim (Nul A) = n - p. This decomposes the domain of the linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$,

$$T(\underline{x}) := A \underline{x}$$

By the same reasoning applied to the transpose transformation from $\mathbb{R}^m \to \mathbb{R}^n$, the codomain of *T* decomposes into $Col A = Row A^T$ and $(Col A)^{\perp} = Nul A^T$, with dim(Col A) = p and $dim(Nul A^T) = m - p$. In other words, we have justified the diagram we really only waved our hands at back in Chapter 4, except for transformations from $\mathbb{R}^2 \to \mathbb{R}^2$.

