Math 2270-004 Week 15 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes cover material for Monday. I'll add course review material for Tuesday later.

Mon Apr 23
« 7.2 Second derivative test, and maybe another conic diagonalization example.
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From last week ....

Spectral Theorem Let 4 be an n x n symmetric matrix. Then all of the eigenvalues of 4 are real, and there
exists an orthonormal eigenbasis B = { u,u,, .. un} consisting of eigenvectors for A. Eigenspaces with

different eigenvalues are automatically orthogonal to each other. If any eigenspace has dimension greater
than 1, its orthonormal basis may be constructed via Gram — Schmidlt.

(Diagonalization of quadratic forms: Let

n
O(x) = .Zlaijx,-xj =x'Ax
l,]=
for a symmetric matrix A, with real entries. 4 symmetric = by the spectral theorem there exists an

orthonormal eigenbasis B = { u,u, ..U }

\for the corresponding orthogonal matrix

P= [ ] |,
e D=P4gp,

where D is the diagonal matrix of eigenvalues corresponding to the eigenvectors in P. And we have

where y= [x]g and P= P E < B. Thus
Ox)=x Ax

ZyTPTAPyZyTD by

So by the orthogonal change of variables all cross terms have been removed. Applications include conic
curves, quartic surfaces, multivariable second derivative test, principal component analysis (PCA) in
statistics, singular value matrix decomposition (SVD) in geometry and computer science, and more.



a;x;x, = XTA X (for 4 a symmetric matrix) is called

.M=

Definition: The quadratic form Q (x) =

i,j=1
positive definite if

QO(x) >0 forallx #0.

We see that this is the same as saying that all of the eigenvalues of 4 are positive.

a..x.x, = XTA X (for 4 a symmetric matrix) is called

Definition: The quadratic form Q (x) = %%
1

i,]
negative definite if
O(x) <0 forallx # 0.

We see that this is the same as saying that all of the eigenvalues of 4 are negative.



First and second derivative tests from multivariable calculus, revisited. It turns out that a lot of
multivariable calculus is easier to understand once you know linear algebra. This is just one example of
where that happens. (Math majors will see this, and quite a bit more, in Math 3220.) Let
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is the rate of change of /in the direction of u, atx,. ("The directional derivative of £, at x,,, in the direction

of u". This generalizes pure partial derivatives, Wthh are rates of change in the standard coordinate-
directions.) Using the multivariable version of the chain rule we compute
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[Definition! Let fbe a differentiable funcuZn as above Thgé is a critical point for fif and only if
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In other words, a critical point is a point at which a/l|directional derivatives are zero. Local extrema of
differentiable functions will only occur at critical points, but not all critical points are the locations of local
extrema. The ways in which things can go wrong afe more interesting than in the single-variable case,

where we used the second derivative test.
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In your first multivariable calculus class you were ggl:ably shown a second derivative test for functions of
(only) two variables. The one you were probably shown obscures what's really going on, which is
actually simpler to understand in general once you know linear algebra. Here's what you were probably
shown (taken from the beginning of the Wikipedia article on this topic):

https://en.wikipedia.org/wiki/Second_partial derivative test

The test [edit;

Functions of two variables |edit]

Suppose that f(x, y) is a differentiable real function of two variables whose second partial derivatives exist. The Hessian matrix H of fis the 2 x 2 matrix of partial

derivatives of f:
foz(,9) fmy(mvy))
H(z,y) = .
= (o o

Define D(x, y) to be the determinant

D(z,y) = det(H(z,y)) = fuo (2, 4) fi (2,9) = (o (2,9))",
of H. Finally, suppose that (a, b) is a critical point of f (that is, f(a, b) = f,{a, b) = 0). Then the second partial derivative test asserts the following:["]
1. If D(a,b) > 0 and f,,(a,b) > 0 then (a,b) is a local minimum of .
2. It D(a,b) > 0 and f,;(a,b) < 0 then (a,b) is alocal maximum of f.
3. If D(a,b) < 0 then (a, b) is a saddle point of f.
4. If D(a, b) = 0 then the second derivative test is inconclusive, and the point (a, b) could be any of a minimum, maximum or saddle point.

Note that other equivalent versions of the test are possible. For example, some texts may use the trace f,, + f,,, in place of the value f, in the first two cases
above.lcitation needed) gych variations in the procedure applied do not alter the outcome of the test.



Continuing the discussion about directional derivatives,

Definition: Letf, x,, u be as above. The second derivative of fat x,, in the u direction is defined by

D, (f()) = (% + 1)

t=0"

We compute this expression with the chain rule, starting with our expression for the first directional
derivative, from the previous pages:

& d~x af
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Att= 0 and recalling that axl.()xj (xo) = W (%) this reads
7
Dy (/(%)) = o/ (3 + ) Zaxax (%) -

i=1

Definition: The Hessian matrix of fat x,, [sz ( ) ] is the n X n (symmetric) matrix of second partial

derivatives; entry, [sz (XO)] aiaf X, ( ) (
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So,




c
Theorem The function fis concave up in every direction  at X, if and only if the Hessian matrix
[sz (50 ) ] is positive definite. The function fis concave down in every direction u at x, if and only if

the Hessian matrix [sz (xo ) ] is negative definite. The first case happens if and only if all of the

eigenvalues of [sz ()_CO ) ] are positive, and the second case happens if and only if they are all negative. If

—0
a local maximum value. If the Hessian has some negative and some positive eigenvalues, then f (% ) is

X, is a critical point for £, then in the first case f ()_CO ) is a local minimum value; and in the second case it is

neither a local minimum nor a local maximum. If all the eigenvalues are non-negative, or if they are all
non-positive, but some are zero, then further work is required to determine whether f (J_co ) is a local

extreme value.

Functions of many variables |edit]

For a function fof two or more variables, there is a generalization of the rule above. In this context, instead of examining the determinant of the Hessian matrix, one
must look at the eigenvalues of the Hessian matrix at the critical point. The following test can be applied at any critical point a for which the Hessian matrix is
invertible:

1. If the Hessian is positive definite (equivalently, has all eigenvalues positive) at a, then f attains a local minimum at a.

2. If the Hessian is negative definite (equivalently, has all eigenvalues negative) at a, then f attains a local maximum at a.

3. If the Hessian has both positive and negative eigenvalues then ais a saddle point for f (and in fact this is true even if a is degenerate).

In those cases not listed above, the test is inconclusive.2!

X



The test [edit]

Functions of two variables |edit]

Suppose that f(x, y) is a differentiable real function of two variables whose second partial derivatives exist. The Hessian matrix H of fis the 2 x 2 matrix of partial

derivatives of f.
x x
H(w,y) _ (fm:( 1y) fx!l( 1y)) )
fue (z,y)  fu(z,y)
Define D(x, y) to be the determinant
2

D(z,y) = det(H(z,y)) = fau(z,y) fyy (%, 9) — (fay (2, 9))",

of H. Finally, suppose that (a, b) is a critical point of f (that is, f(a, b) = fy(a, b) = 0). Then the second partial derivative test asserts the foIIowing:[”

@If D(a,b) > 0and f,;(a,b) > 0 then (a,b) is a local minimum of f.
2. If D(a,b) > 0 and f,,(a,b) < 0 then (a, b) is alocal maximum of .
f D(a,b) < 0 then (a,b) is a saddle point of f.
4. If D(a,b) = 0 then the second derivative test is inconclusive, and the point (a, b) could be any of a minimum, maximum or saddle point.

Note that other equivalent versions of the test are possible. For example, some texts may use the trace f,, + f,,, in place of the value f,, in the first two cases
above.[citation needed] gy,ch variations in the procedure applied do not alter the outcome of the test.

Exercise 1 Explain the (more complicated) second derivative test you were taught in multivariable calculus
for functions of just two variables, as a special case of the the more general one that uses eigenvalues.
Hint:
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Exercise 2) Which of the following functions has a local minimum at the origin, if any? Could you
diagonalize the associated quadratic forms and sketch level sets?

2a) f(x,y) =" +4xy +° —]—-ﬁ vE=[4, £3] - [’zij) Ux+2y] = Lo,0] ot the ovign

_ 2 2 0
2b) f(x,y)=x" —xy+ »". D'f (5,0) = | F14 acx7 |2 4_')
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> with (plots) :
plot3d(x2 +4-xy +y2,x=—1..1,y=—1 ..1);
plot3d(x2 — Xy +y2,x=—1 Jly=-1 ..1);




