
Tues Apr 17
         Symmetric matrices and the spectral theorem, 7.1-7.2

Announcements: 

Warm-up Exercise:



Recall that the transpose operation swaps rows with columns, and vise verse.  These properties arose from
the actual definition for AT, which was

entryi jA
T = entryj i A.

The i j and j i  locations on a matrix are reflections across the diagonal of each other.  (This is the matrix 
version of the 2 reflection across the line x2 = x1 that we've encountered several times in this course.)  See
how this plays out for the matrix A below, by finding the transpose three ways:  Turning rows into 
columns; turning columns into rows; reflecting across the diagonal.

A =

1 2 7

1 3 2

9 4 2

Def  A square matrix is symmetric if and only if AT = A.  

Exercise 1  Which of the following matrices is symmetric, and which is not?
1a) 

B  

4 2 1

2 0 2

1 2 7
1b)

C  

1 2 1

2 1 2

2 2 3
 



The Spectral Theorem asserts that all n n symmetric matrices A  (with real number entries) are 
diagonalizable, with n linearly independent real eigenvectors and associated eigenvalues.  Furthermore, 
eigenvectors with different eigenvalues are automatically orthogonal.  (For eigenspaces with dimension 
greater than one, one can use Gram Schmidt to create orthonormal bases).  Thus, the eigenvector basis of 

n can be chosen to be orthonormal.  In otherwords, we may express

A = P 1D P = PT D P

where P is an orthogonal matrix which can also be interpreted as a change of basis matrix.  Let's see how 
this plays out in an example.  This will forshadow all of sections 7.1-7.2.  You'll notice that we're using 
major concepts and ideas from throughout the course, which is not a bad way to be reviewing course 
material at this point of the semester.

Example  

1  Consider the curve in 2 defined implicitly as the solution set to  the equation

2 x2 2 y2 5 x y = 1.
Can you identify the curve as a conic section?  Can you graph it?  Note the x y term!

2  Does the function f x, y  = 2 x2 2 y2 5 x y have a local maximum or local minimum at 
x, y = 0, 0 ?   Note, the gradient

 f = f x , f y  = 4 x 5 y, 4 y 5 x  = 0, 0   at the point 0, 0 ,
so the origin is at least a candidate for a local max or min.

Exercise 1a.   Check that can rewrite the quadratic expression as

2 x2 2 y2 5 x y = x y
2

5
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5
2

2
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Note, in general, if v, w n  and if A is an n n matrix then
vT1 n An n wn 1  

is a 1 1 matrix, i.e. a scalar.  And its value is

vT A w = 
i = 1

n

vi entryi A w  =  
i = 1

n

vi 
j = 1

n

ai jwj  = 
i, j = 1

n

ai j viwj .

So given a quadratic expression ("quadratic form")  in any number of variables x1, x2,  xn one can 
rewrite the quadratic form as 

xT A x 

and one can choose to make A a symmetric matrix, as we did in our specific example. by splitting cross 
terms symmetrically.



Exercise 1a  Find the eigenvalues and eigenvectors for the matrix we're using to express our quadratic 
expression.

2 x2 2 y2 5 x y = x y
2

5
2

5
2

2

x

y
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Solution:  E
=

1
2

= span
1

1
 

E
=

9
2

= span
1

1
.



Was it an accident that the two eigenvectors were orthogonal?  No.  Here's why that will always be true as 
long as the eigenvalues are different, for any symmetric matrix of arbitrary size:  Let A be symmetric, and 
let 

A v = 1v       A w = 2 w

with 1 2.   Because AT = A, we claim that
w  A v  = A w  v .

One way to see this is by noting
w  A v =  wT A v  .

Since the result of this operation is a scalar, it equals its transpose:

wT A v = wT A v 
T 

 = vTATw = vT A w = v  A w .

But 
w  A v = w  1 v = 1 v  w.

A w  v = 2 w v.

So, since 1 2 is must be that v  w = 0!

*  And a special fact for 2 2 symmetric matrices and eigenvectors in 2:  If A v =  v for v  0 let 
w  v .  Then w is automatically an eigenvector:

w  A v = w  v =  w  v = 0.

So

0 =  w  A v = v  A w  v  A w  A w  span w   
because we're in 2.  So w is also an eigenvector, automatically.



Continuing ...

2 x2 2 y2 5 x y = x y
2

5
2

5
2
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x

y
                     

and for

A =
2

5
2

5
2

2
 ;       E

=
1
2

= span
1

1
,  E

=
9
2

= span
1

1
.

This suggests creating an orthonormal eigenbasis!  And we'll order the eigenvectors so that the 
corresponding orthogonal matrix is a rotation and not a reflection (by making the determinant of the matrix 

1 instead of 1).

B  = 

1

2

1

2

,  

1

2

1

2

       P = 

1

2

1

2

1

2

1

2

A = P 1D P = PT D P

Note
P =    P E B 

where as always, 

E = 
1

0
,

0

1
.

For v 2  write v =
x

y
 in standard coordinates and v B = 

x

y
.    (The text uses 

x1

x2
 and 

y1

y2
 

respectively.)  So the two coordinate systems are related by

x

y
 =  

1

2
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Do algebra!

2 x2 2 y2 5 xy  = x y
2
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= x y
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     (because PTAP = D)

= 
9
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So the original curve with equation
2 x2 2 y2 5 xy = 1

in the standard coordinate system has equation
9
2
x 2  

1
2
y 2 = 1

with respect to the rotated coordinate system!  

Answer to 1a)  This curve is a hyperbola!  In the rotated coordinate system its equation is
x 2

2
3

2   
y 2

2
2 = 1.

Answer to 1b)  No!  f x, y = 2 x2 2 y2 5 xy   does not have a local min or max at 0, 0 .  The origin 
is a saddle point, because in the rotated coordinate system

f x , y =
9
2
x 2 1

2
y 2.

Old pictures from when I could still sketch well: 
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Maple verification:   To be continued ....
with plots :
 implicitplot 2 x2 2 y2 5 x y = 1, x = 3 ..3, y = 3 ..3, grid = 200, 200 ;
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plot3d 2 x2 2 y2 5 x y, x = 3 ..3, y = 3 ..3 ;


