Example from last Friday.
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Exercise 3b Further factor R into a diagonal matrix times a volume-preserving shear and interpret the
transformation 7'(x) = 4 x as a composition of (1) a volume preserving shear, followed by (2) a
coordinate scaling that increases volume by a factor of 12, followed by a rotation about the x, axis in [R3,

which preserves volume. The generalization of this example explains why the determinant of A4 (or its
absolute value in general) is the volume expansion factor for the transformation 7'(x) = 4 x.



Definition A squareis called orthogonal if its columns are ortho-normal. (You can read

more about orthogonal matrices af e.g. Wikipedia.)

Theorem. Let O be an orthogonal matrix. Then
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b) The rows of Q are also ortho-normal.
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¢) the transformation 7": R” — R” given by
T(x)=0x

1

i

1
0

preserves dot products and magnitudes, (so also volumes, since cubes generated by perpendicular vectors

will be transformed into equal-volume cubes). In other words, for all x, y € R”,
T(x)-T(x)=x-x
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d) The only matrix transformations 7 : R? — [R” that preserve dot products are orthogonal transformations.

(These transformations are often referred to as isometries.)
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6.5 Least squares solutions, and projection revisited.
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Least squares solutions, section 6.5

In trying to fit experimental data to a linear model you must often find a "solution" to
Ax=b

where no exact solution actually exists. Mathematically speaking, the issue is that b is not in the range of
the transformation

T(x)=4x,
Le.
X & Range T = Col A.

In such a case, the least squares solution(s) x solve(s)

A x =PIy 4 Ql

Thus, for the least squares solution(s), 4 x is as close to b as possible. Note that there will be a unique
least squares solution x if and only if Nul 4 = {0}, i.e. if and only if the columns of 4 are linearly
independent. (Recall, any two solutions to the same nonhomogeneous matrix equation differ by a solution
to the homogeneous equation.)
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Exercise | Find the least squares solution to W,
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Note that the implicit equation of the plane spanned by the two columns of 4 is
. -y, +2y,+y,=0. -24 643 F 0

%You know two ways to find that implicit equation (!) .....at least it's easy to check that the the two column
vectors satisfy it. Since [3 3 3 ]T does not satisfy the implicit equation, there is no exact solution to this

problem. If you wish, it could be instructive I‘eViSW the two w_e)tys.
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You may use the Gram-Schmidt ortho-normal basis for Col A, tramely
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There's actually a smart way to find the least squares solutions that doesn't require an orthonormal basis for
Col A. And as aresult, it turns out that one can also compute projections onto a subspace without first
constructing an orthonormal basis for the subspace !!! Consider the following chain of equivalent
conditions on x:

Ax=projc, 4 \
Z = b-Ax € (Cold)*
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AT (b-4x)=0
AT - A"4x=0

ATax=4"bh . g

This last equation will always be consistent because projections exist. And if the columns of 4 are linearly
independent the solutions to the top equation, and hence the final equation, will be unique. So the matrix

A" 4 will be invertible in that case. The final matrix equation is called the normal equation for least
squares solutions.

Exercise 2 Re-do Exercise 1 using the normal equation, i.e find the least squares solution X to
12 3
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And then note that 4 x is proj , b, i.e. you found the projection of [3 3 3] without ever finding and
using an ortho-normal basis!!! (\ A C
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Exercise 3 In the case that 4’4 is invertible we may take the normal equation for finding the least squares
solution to A x=b and find 4 x = proj , b directly:

\ Aax=4"b )

-1

x=(4"4) 4A"b

-1
proj,, p=Ax=A4(4"4) A'b.
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Verify for the third time that for W=span{| 0 |, | 1 |{,proj,| 3 |= | 1 |by "plugand chug".
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