2. Row reduce the system's augmented matrix:

$$\begin{bmatrix} 1 & -2 & -1 & 3 & 0 \\ -2 & 4 & 5 & -5 & 3 \\ 3 & -6 & -6 & 8 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & -1 & 3 & 0 \\ 0 & 0 & 3 & 1 & 3 \\ 0 & 0 & -3 & -1 & 2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -2 & -1 & 3 & 0 \\ 0 & 0 & 3 & 1 & 3 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix}$$

This echelon matrix shows that the system is *inconsistent*, because its rightmost column is a pivot column; the third row corresponds to the equation 0 = 5. There is no need to perform any more row operations. Note that the presence of the free variables in this problem is irrelevant because the system is inconsistent.

3. Since the coefficient matrix has four pivots, there is a pivot in every row of the coefficient matrix. This means that when the coefficient matrix is row reduced, it will not have a row of zeros, thus the corresponding row reduced augmented matrix can never have a row of the form $[0\ 0\ \cdots\ 0\ b]$, where b is a nonzero number. By Theorem 2, the system is consistent. Moreover, since there are seven columns in the coefficient matrix and only four pivot columns, there will be three free variables resulting in infinitely many solutions.

1.3 VECTOR EQUATIONS

Important properties of linear systems can be described with the concept and notation of vectors. This section connects equations involving vectors to ordinary systems of equations. The term *vector* appears in a variety of mathematical and physical contexts, which we will discuss in Chapter 4, "Vector Spaces." Until then, *vector* will mean an *ordered list of numbers*. This simple idea enables us to get to interesting and important applications as quickly as possible.

Vectors in \mathbb{R}^2

A matrix with only one column is called a column vector, or simply a vector. Examples of vectors with two entries are

$$\mathbf{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} .2 \\ .3 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

where w_1 and w_2 are any real numbers. The set of all vectors with two entries is denoted by \mathbb{R}^2 (read "r-two"). The \mathbb{R} stands for the real numbers that appear as entries in the vectors, and the exponent 2 indicates that each vector contains two entries.

Two vectors in \mathbb{R}^2 are **equal** if and only if their corresponding entries are equal. Thus $\begin{bmatrix} 4 \\ 7 \end{bmatrix}$ and $\begin{bmatrix} 7 \\ 4 \end{bmatrix}$ are *not* equal, because vectors in \mathbb{R}^2 are *ordered pairs* of real numbers.

¹ Most of the text concerns vectors and matrices that have only real entries. However, all definitions and theorems in Chapters 1–5, and in most of the rest of the text, remain valid if the entries are complex numbers. Complex vectors and matrices arise naturally, for example, in electrical engineering and physics.

Given two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 , their sum is the vector $\mathbf{u} + \mathbf{v}$ obtained by adding corresponding entries of \mathbf{u} and \mathbf{v} . For example,

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 1+2 \\ -2+5 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

Given a vector \mathbf{u} and a real number c, the scalar multiple of \mathbf{u} by c is the vector $c\mathbf{u}$ obtained by multiplying each entry in \mathbf{u} by c. For instance,

if
$$\mathbf{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
 and $c = 5$, then $c\mathbf{u} = 5 \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 15 \\ -5 \end{bmatrix}$

The number c in c**u** is called a **scalar**; it is written in lightface type to distinguish it from the boldface vector **u**.

The operations of scalar multiplication and vector addition can be combined, as in the following example.

EXAMPLE 1 Given
$$\mathbf{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$, find $4\mathbf{u}$, $(-3)\mathbf{v}$, and $4\mathbf{u} + (-3)\mathbf{v}$.

SOLUTION

$$4\mathbf{u} = \begin{bmatrix} 4 \\ -8 \end{bmatrix}, \qquad (-3)\mathbf{v} = \begin{bmatrix} -6 \\ 15 \end{bmatrix}$$

and

$$4\mathbf{u} + (-3)\mathbf{v} = \begin{bmatrix} 4 \\ -8 \end{bmatrix} + \begin{bmatrix} -6 \\ 15 \end{bmatrix} = \begin{bmatrix} -2 \\ 7 \end{bmatrix}$$

Sometimes, for convenience (and also to save space), this text may write a column vector such as $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$ in the form (3,-1). In this case, the parentheses and the comma distinguish the vector (3,-1) from the 1×2 row matrix $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$, written with brackets and no comma. Thus

$$\begin{bmatrix} 3 \\ -1 \end{bmatrix} \neq \begin{bmatrix} 3 & -1 \end{bmatrix}$$

because the matrices have different shapes, even though they have the same entries.

Geometric Descriptions of \mathbb{R}^2

Consider a rectangular coordinate system in the plane. Because each point in the plane is determined by an ordered pair of numbers, we can identify a geometric point (a, b) with the column vector $\begin{bmatrix} a \\ b \end{bmatrix}$. So we may regard \mathbb{R}^2 as the set of all points in the plane. See Figure 1.

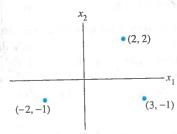


FIGURE 1 Vectors as points.

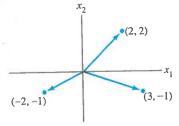


FIGURE 2 Vectors with arrows.

htmost There he free

of the aced, it matrix ber. By imns in ariables

notation stems of contexts, mean an mportant

Examples

is denoted ries in the

are equal.

irs of real

tions and applex and physics.

The geometric visualization of a vector such as $\begin{bmatrix} 3 \\ -1 \end{bmatrix}$ is often aided by including an arrow (directed line segment) from the origin (0,0) to the point (3,-1), as in Figure 2. In this case, the individual points along the arrow itself have no special significance.²

The sum of two vectors has a useful geometric representation. The following rule can be verified by analytic geometry.

Parallelogram Rule for Addition

If u and v in \mathbb{R}^2 are represented as points in the plane, then u+v corresponds to the fourth vertex of the parallelogram whose other vertices are u, 0, and v. See Figure 3.

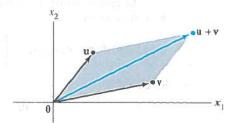


FIGURE 3 The parallelogram rule.

EXAMPLE 2 The vectors
$$\mathbf{u} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} -6 \\ 1 \end{bmatrix}$, and $\mathbf{u} + \mathbf{v} = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$ are displayed in Figure 4.

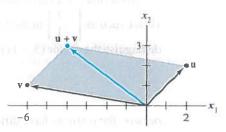


FIGURE 4

The next example illustrates the fact that the set of all scalar multiples of one fixed nonzero vector is a line through the origin, (0,0).

EXAMPLE 3 Let
$$\mathbf{u} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$$
. Display the vectors \mathbf{u} , $2\mathbf{u}$, and $-\frac{2}{3}\mathbf{u}$ on a graph.

SOLUTION See Figure 5, where
$$u$$
, $2u = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$, and $-\frac{2}{3}u = \begin{bmatrix} -2 \\ 2/3 \end{bmatrix}$ are displayed.

The arrow for $2\mathbf{u}$ is twice as long as the arrow for \mathbf{u} , and the arrows point in the same direction. The arrow for $-\frac{2}{3}\mathbf{u}$ is two-thirds the length of the arrow for \mathbf{u} , and the arrows point in opposite directions. In general, the length of the arrow for $c\mathbf{u}$ is |c| times the length of the arrow for \mathbf{u} . [Recall that the length of the line segment from (0,0) to (a,b) is $\sqrt{a^2 + b^2}$. We shall discuss this further in Chapter 6.]

Scalar mul

² In physics, arrows can represent forces and usually are free to move about in space. This interpretation of vectors will be discussed in Section 4.1.

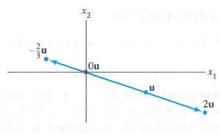
cluding an

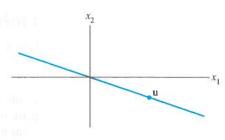
Figure 2. ficance.2 wing rule

onds to v. See

displayed

one fixed


raph.


lisplayed. the same

ne arrows times the

) to (a, b)

retation of

Typical multiples of u

The set of all multiples of u

FIGURE 5

Vectors in \mathbb{R}^3

Vectors in \mathbb{R}^3 are 3×1 column matrices with three entries. They are represented geometrically by points in a three-dimensional coordinate space, with arrows from the

origin sometimes included for visual clarity. The vectors $\mathbf{a} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$ and $2\mathbf{a}$ are displayed in Figure 6.

Vectors in \mathbb{R}^n

If n is a positive integer, \mathbb{R}^n (read "r-n") denotes the collection of all lists (or ordered *n-tuples*) of n real numbers, usually written as $n \times 1$ column matrices, such as

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}$$

The vector whose entries are all zero is called the **zero vector** and is denoted by **0**. (The number of entries in 0 will be clear from the context.)

Equality of vectors in \mathbb{R}^n and the operations of scalar multiplication and vector addition in \mathbb{R}^n are defined entry by entry just as in \mathbb{R}^2 . These operations on vectors have the following properties, which can be verified directly from the corresponding properties for real numbers. See Practice Problem 1 and Exercises 33 and 34 at the end of this section.

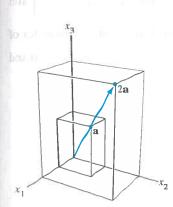


FIGURE 6 Scalar multiples.

FIGURE 7

Vector subtraction.

Algebraic Properties of \mathbb{R}^n

For all \mathbf{u} , \mathbf{v} , \mathbf{w} in \mathbb{R}^n and all scalars c and d:

(i)
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

$$(\mathbf{v}) \ c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

(ii)
$$(u + v) + w = u + (v + w)$$

(vi)
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(iii)
$$u + 0 = 0 + u = u$$

(vii)
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

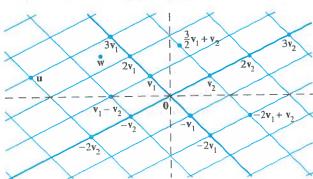
(iv)
$$u + (-u) = -u + u = 0$$
,

(viii)
$$1\mathbf{u} = \mathbf{u}$$

For simplicity of notation, a vector such as $\mathbf{u} + (-1)\mathbf{v}$ is often written as $\mathbf{u} - \mathbf{v}$. Figure 7 shows $\mathbf{u} - \mathbf{v}$ as the sum of \mathbf{u} and $-\mathbf{v}$.

Linear Combinations

Given vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p$ in \mathbb{R}^n and given scalars c_1, c_2, \dots, c_p , the vector \mathbf{y} defined by


$$\mathbf{y} = c_1 \mathbf{v}_1 + \dots + c_p \mathbf{v}_p$$

is called a **linear combination** of v_1, \ldots, v_p with **weights** c_1, \ldots, c_p . Property (ii) above permits us to omit parentheses when forming such a linear combination. The weights in a linear combination can be any real numbers, including zero. For example, some linear combinations of vectors v_1 and v_2 are

$$\sqrt{3} \mathbf{v}_1 + \mathbf{v}_2$$
, $\frac{1}{2} \mathbf{v}_1 \ (= \frac{1}{2} \mathbf{v}_1 + 0 \mathbf{v}_2)$, and $\mathbf{0} \ (= 0 \mathbf{v}_1 + 0 \mathbf{v}_2)$

EXAMPLE 4 Figure 8 identifies selected linear combinations of $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and

 $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. (Note that sets of parallel grid lines are drawn through integer multiples of \mathbf{v}_1 and \mathbf{v}_2 .) Estimate the linear combinations of \mathbf{v}_1 and \mathbf{v}_2 that generate the vectors \mathbf{u} and \mathbf{w} .

FIGURE 8 Linear combinations of v_1 and v_2 .

SOLUTION The parallelogram rule shows that \mathbf{u} is the sum of $3\mathbf{v}_1$ and $-2\mathbf{v}_2$; that is,

$$\mathbf{u} = 3\mathbf{v}_1 - 2\mathbf{v}_2$$

This expression for \mathbf{u} can be interpreted as instructions for traveling from the origin to \mathbf{u} along two straight paths. First, travel 3 units in the \mathbf{v}_1 direction to $3\mathbf{v}_1$, and then travel -2 units in the \mathbf{v}_2 direction (parallel to the line through \mathbf{v}_2 and $\mathbf{0}$). Next, although the vector \mathbf{w} is not on a grid line, \mathbf{w} appears to be about halfway between two pairs of grid lines, at the vertex of a parallelogram determined by $(5/2)\mathbf{v}_1$ and $(-1/2)\mathbf{v}_2$. (See Figure 9.) Thus a reasonable estimate for \mathbf{w} is

$$w = \frac{5}{2}v_1 - \frac{1}{2}v_2$$

The next example connects a problem about linear combinations to the fundamental existence question studied in Sections 1.1 and 1.2.

EXAMPLE 5 Let
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$. Determine whether

b can be generated (or written) as a linear combination of \mathbf{a}_1 and \mathbf{a}_2 . That is, determine whether weights x_1 and x_2 exist such that

If an arbitrary matter of
$$\mathbf{v}(1-)$$
 + the arbitrary and $\mathbf{v}(1-)$ + the arbitrary and $\mathbf{v$

If vector equation (1) has a solution, find it.

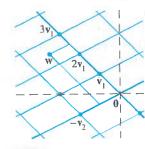


FIGURE 9

SOLUTION Use the definitions of scalar multiplication and vector addition to rewrite the vector equation

$$x_{1} \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix} + x_{2} \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow$$

$$a_{1} \qquad \qquad a_{2} \qquad \qquad b$$

which is the same as

$$\begin{bmatrix} x_1 \\ -2x_1 \\ -5x_1 \end{bmatrix} + \begin{bmatrix} 2x_2 \\ 5x_2 \\ 6x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$

and

$$\begin{bmatrix} x_1 + 2x_2 \\ -2x_1 + 5x_2 \\ -5x_1 + 6x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$$
 (2)

The vectors on the left and right sides of (2) are equal if and only if their corresponding entries are both equal. That is, x_1 and x_2 make the vector equation (1) true if and only if x_1 and x_2 satisfy the system

$$x_1 + 2x_2 = 7$$

$$-2x_1 + 5x_2 = 4$$

$$-5x_1 + 6x_2 = -3$$
(3)

To solve this system, row reduce the augmented matrix of the system as follows:³

$$\begin{bmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 9 & 18 \\ 0 & 16 & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 1 & 2 \\ 0 & 16 & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

The solution of (3) is $x_1 = 3$ and $x_2 = 2$. Hence **b** is a linear combination of \mathbf{a}_1 and \mathbf{a}_2 , with weights $x_1 = 3$ and $x_2 = 2$. That is,

$$3\begin{bmatrix} 1\\ -2\\ -5 \end{bmatrix} + 2\begin{bmatrix} 2\\ 5\\ 6 \end{bmatrix} = \begin{bmatrix} 7\\ 4\\ -3 \end{bmatrix}$$

Observe in Example 5 that the original vectors \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{b} are the columns of the augmented matrix that we row reduced:

$$\begin{bmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3 \end{bmatrix}$$

$$\uparrow & \uparrow & \uparrow$$

$$\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}$$

For brevity, write this matrix in a way that identifies its columns-namely,

$$\begin{bmatrix} a_1 & a_2 & b \end{bmatrix} \tag{4}$$

It is clear how to write this augmented matrix immediately from vector equation (1), without going through the intermediate steps of Example 5. Take the vectors in the order in which they appear in (1) and put them into the columns of a matrix as in (4).

The discussion above is easily modified to establish the following fundamental fact.

ined

bove its in inear

and

les of

u and

nat is,

gin to u avel -2 vector d lines, gure 9.)

amental

whether

etermine

(1)

³ The symbol ~ between matrices denotes row equivalence (Section 1.2).

A vector equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \dots + x_n\mathbf{a}_n = \mathbf{b}$$

has the same solution set as the linear system whose augmented matrix is

$$\begin{bmatrix} a_1 & a_2 & \cdots & a_n & b \end{bmatrix} \tag{5}$$

In particular, **b** can be generated by a linear combination of a_1, \ldots, a_n if and only if there exists a solution to the linear system corresponding to the matrix (5).

One of the key ideas in linear algebra is to study the set of all vectors that can be generated or written as a linear combination of a fixed set $\{v_1, \ldots, v_p\}$ of vectors.

DEFINITION

If $\mathbf{v}_1, \dots, \mathbf{v}_p$ are in \mathbb{R}^n , then the set of all linear combinations of $\mathbf{v}_1, \dots, \mathbf{v}_p$ is denoted by $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ and is called the **subset of** \mathbb{R}^n **spanned** (or **generated**) by $\mathbf{v}_1, \dots, \mathbf{v}_p$. That is, $\mathrm{Span}\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ is the collection of all vectors that can be written in the form

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p$$

with c_1, \ldots, c_p scalars.

Asking whether a vector \mathbf{b} is in Span $\{\mathbf{v}_1,\ldots,\mathbf{v}_p\}$ amounts to asking whether the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + \dots + x_p\mathbf{v}_p = \mathbf{b}$$

has a solution, or, equivalently, asking whether the linear system with augmented matrix $[v_1 \cdots v_p \ b]$ has a solution.

Note that Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ contains every scalar multiple of \mathbf{v}_1 (for example), since $c\mathbf{v}_1 = c\mathbf{v}_1 + 0\mathbf{v}_2 + \dots + 0\mathbf{v}_p$. In particular, the zero vector must be in Span $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$.

A Geometric Description of Span $\{v\}$ and Span $\{u,v\}$

Let v be a nonzero vector in \mathbb{R}^3 . Then Span $\{v\}$ is the set of all scalar multiples of v, which is the set of points on the line in \mathbb{R}^3 through v and 0. See Figure 10.

If \mathbf{u} and \mathbf{v} are nonzero vectors in \mathbb{R}^3 , with \mathbf{v} not a multiple of \mathbf{u} , then Span $\{\mathbf{u}, \mathbf{v}\}$ is the plane in \mathbb{R}^3 that contains \mathbf{u} , \mathbf{v} , and $\mathbf{0}$. In particular, Span $\{\mathbf{u}, \mathbf{v}\}$ contains the line in \mathbb{R}^3 through \mathbf{u} and $\mathbf{0}$ and the line through \mathbf{v} and $\mathbf{0}$. See Figure 11.

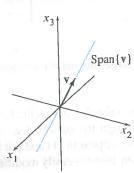


FIGURE 10 Span {v} as a line through the origin.

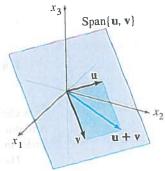


FIGURE 11 Span {u, v} as a plane through the origin.

SOLUTION Does the equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 = \mathbf{b}$ have a solution? To answer this, row reduce the augmented matrix $[\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{b}]$:

$$\begin{bmatrix} 1 & 5 & -3 \\ -2 & -13 & 8 \\ 3 & -3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & -3 \\ 0 & -3 & 2 \\ 0 & -18 & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & -3 \\ 0 & -3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$

The third equation is 0 = -2, which shows that the system has no solution. The vector equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 = \mathbf{b}$ has no solution, and so \mathbf{b} is *not* in Span $\{\mathbf{a}_1, \mathbf{a}_2\}$.

Linear Combinations in Applications

The final example shows how scalar multiples and linear combinations can arise when a quantity such as "cost" is broken down into several categories. The basic principle for the example concerns the cost of producing several units of an item when the cost per unit is known:

$$\left\{
 \begin{array}{l}
 \text{number} \\
 \text{of units}
 \end{array} \right\} \cdot \left\{ \begin{array}{l}
 \text{cost} \\
 \text{per unit}
 \end{array} \right\} = \left\{ \begin{array}{l}
 \text{total} \\
 \text{cost}
 \end{array} \right\}$$

EXAMPLE 7 A company manufactures two products. For \$1.00 worth of product B, the company spends \$.45 on materials, \$.25 on labor, and \$.15 on overhead. For \$1.00 worth of product C, the company spends \$.40 on materials, \$.30 on labor, and \$.15 on overhead. Let

$$\mathbf{b} = \begin{bmatrix} .45 \\ .25 \\ .15 \end{bmatrix} \quad \text{and} \quad \mathbf{c} = \begin{bmatrix} .40 \\ .30 \\ .15 \end{bmatrix}$$

Then **b** and **c** represent the "costs per dollar of income" for the two products.

- a. What economic interpretation can be given to the vector 100b?
- b. Suppose the company wishes to manufacture x_1 dollars worth of product B and x_2 dollars worth of product C. Give a vector that describes the various costs the company will have (for materials, labor, and overhead).

SOLUTION

ean be

(or

ther the

d matrix

r exam-

st be in

ples of v,

 $1\{\mathbf{u}, \mathbf{v}\}$ is

ne line in

7}

a. Compute

$$100\mathbf{b} = 100 \begin{bmatrix} .45 \\ .25 \\ .15 \end{bmatrix} = \begin{bmatrix} 45 \\ 25 \\ 15 \end{bmatrix}$$

The vector 100b lists the various costs for producing \$100 worth of product B—namely, \$45 for materials, \$25 for labor, and \$15 for overhead.

b. The costs of manufacturing x_1 dollars worth of B are given by the vector x_1 **b**, and the costs of manufacturing x_2 dollars worth of C are given by x_2 **c**. Hence the total costs for both products are given by the vector x_1 **b** + x_2 **c**.

PRACTICE PROBLEMS

- 1. Prove that $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ for any \mathbf{u} and \mathbf{v} in \mathbb{R}^n .
- 2. For what value(s) of h will y be in Span $\{v_1, v_2, v_3\}$ if

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix}, \text{ and } \mathbf{y} = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}$$

3. Let w_1, w_2, w_3, u , and v be vectors in \mathbb{R}^n . Suppose the vectors u and v are in Span $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. Show that $\mathbf{u} + \mathbf{v}$ is also in Span $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$. [Hint: The solution to Practice Problem 3 requires the use of the definition of the span of a set of vectors. It is useful to review this definition on Page 30 before starting this exercise.]

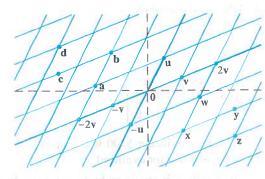
1.3 EXERCISES

In Exercises 1 and 2, compute $\mathbf{u} + \mathbf{v}$ and $\mathbf{u} - 2\mathbf{v}$.

1.
$$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} -3 \\ -1 \end{bmatrix}$$

$$\mathbf{2.} \ \mathbf{u} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$

In Exercises 3 and 4, display the following vectors using arrows on an xy-graph: \mathbf{u} , \mathbf{v} , $-\mathbf{v}$, $-2\mathbf{v}$, \mathbf{u} + \mathbf{v} , \mathbf{u} - \mathbf{v} , and \mathbf{u} - $2\mathbf{v}$. Notice that $\mathbf{u} - \mathbf{v}$ is the vertex of a parallelogram whose other vertices are \mathbf{u} . $\mathbf{0}$, and $-\mathbf{v}$.


- 3. u and v as in Exercise 1
- 4. u and v as in Exercise 2

In Exercises 5 and 6, write a system of equations that is equivalent to the given vector equation.

5.
$$x_1 \begin{bmatrix} 6 \\ -1 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ -7 \\ -5 \end{bmatrix}$$

6.
$$x_1 \begin{bmatrix} -2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 8 \\ 5 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ -6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Use the accompanying figure to write each vector listed in Exercises 7 and 8 as a linear combination of u and v. Is every vector in \mathbb{R}^2 a linear combination of **u** and **v**?

- 7. Vectors a, b, c, and d
- 8. Vectors w, x, y, and z

In Exercises 9 and 10, write a vector equation that is equivalent to the given system of equations.

9.
$$x_2 + 5x_3 = 0$$

$$10. \ 4x_1 + x_2 + 3x_3 = 9$$

$$4x_1 + 6x_2 - x_3 = 0 x_1 - 7x_2 - 2x_3 = 2$$

$$x_1 - 7x_2 - 2x_3 =$$

$$-x_1 + 3x_2 - 8x_3 = 0$$

$$8x_1 + 6x_2 - 5x_3 = 15$$

In Exercises 11 and 12, determine if b is a linear combination of

11.
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \mathbf{a}_3 = \begin{bmatrix} 5 \\ -6 \\ 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$$

12.
$$\mathbf{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} 0 \\ 5 \\ 5 \end{bmatrix}, \mathbf{a}_3 = \begin{bmatrix} 2 \\ 0 \\ 8 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} -5 \\ 11 \\ -7 \end{bmatrix}$$

In Exercises 13 and 14, determine if b is a linear combination of the vectors formed from the columns of the matrix A.

13.
$$A = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 3 \\ -7 \\ -3 \end{bmatrix}$$

14.
$$A = \begin{bmatrix} 1 & -2 & -6 \\ 0 & 3 & 7 \\ 1 & -2 & 5 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 11 \\ -5 \\ 9 \end{bmatrix}$

In Exercises 15 and 16, list five vectors in Span $\{v_1, v_2\}$. For each vector, show the weights on v1 and v2 used to generate the vector and list the three entries of the vector. Do not make a sketch.

15.
$$\mathbf{v}_1 = \begin{bmatrix} 7 \\ 1 \\ -6 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -5 \\ 3 \\ 0 \end{bmatrix}$$

$$\mathbf{16.} \ \mathbf{v}_1 = \begin{bmatrix} 3 \\ 0 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2 \\ 0 \\ 3 \end{bmatrix}$$

17. Let a

value

18. Let v

value

19. Give

20. Give in Ex

21. Let

Span 22. Cons

b in of A

In Exercis each answ

23. a. A

b. 7

24. a.

e.

25. Let

colu

17. Let $a_1 = \begin{bmatrix} 1 \\ 4 \\ -2 \end{bmatrix}$, $a_2 = \begin{bmatrix} -2 \\ -3 \\ 7 \end{bmatrix}$, and $b = \begin{bmatrix} 4 \\ 1 \\ h \end{bmatrix}$. For what

18. Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -3 \\ 1 \\ 8 \end{bmatrix}$, and $\mathbf{y} = \begin{bmatrix} h \\ -5 \\ -3 \end{bmatrix}$. For what

value(s) of h is y in the plane generated by v_1 and v_2 ?

- 19. Give a geometric description of Span $\{v_1, v_2\}$ for the vectors $\mathbf{v}_1 = \begin{bmatrix} 8\\2\\-6 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 12\\3\\-9 \end{bmatrix}$.
- 20. Give a geometric description of Span {v₁, v₂} for the vectors
- 21. Let $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. Show that $\begin{bmatrix} h \\ k \end{bmatrix}$ is in
- 22. Construct a 3 × 3 matrix A, with nonzero entries, and a vector b in \mathbb{R}^3 such that b is not in the set spanned by the columns

In Exercises 23 and 24, mark each statement True or False. Justify each answer.

- 23. a. Another notation for the vector $\begin{bmatrix} -4\\3 \end{bmatrix}$ is $\begin{bmatrix} -4\\3 \end{bmatrix}$.
 - b. The points in the plane corresponding to $\begin{bmatrix} -2 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} -5\\2 \end{bmatrix}$ lie on a line through the origin.
 - c. An example of a linear combination of vectors v₁ and v₂ is the vector $\frac{1}{2}$ \mathbf{v}_1 .
 - d. The solution set of the linear system whose augmented matrix is $\begin{bmatrix} a_1 & a_2 & a_3 \end{bmatrix}$ b is the same as the solution set of the equation $x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}$.
 - e. The set Span {u,v} is always visualized as a plane through the origin.
- 24. a. Any list of five real numbers is a vector in \mathbb{R}^5 .
 - b. The vector \mathbf{u} results when a vector $\mathbf{u} \mathbf{v}$ is added to the vector v
 - c. The weights c_1, \ldots, c_p in a linear combination $c_1 \mathbf{v}_1 + \cdots + c_p \mathbf{v}_p$ cannot all be zero.
 - d. When u and v are nonzero vectors, Span $\{u, v\}$ contains the line through u and the origin.
 - e. Asking whether the linear system corresponding to an augmented matrix [a₁ a₂ a₃ b] has a solution amounts to asking whether b is in Span $\{a_1, a_2, a_3\}$.
- 25. Let $A = \begin{bmatrix} 1 & 0 & -4 \\ 0 & 3 & -2 \\ -2 & 6 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ -4 \end{bmatrix}$. Denote the

columns of A by a_1, a_2, a_3 , and let $W = \operatorname{Span}\{a_1, a_2, a_3\}$.

- a. Is b in $\{a_1, a_2, a_3\}$? How many vectors are in $\{a_1, a_2, a_3\}$?
- b. Is b in W? How many vectors are in W?
- c. Show that a_1 is in W. [Hint: Row operations are unnec-

26. Let
$$A = \begin{bmatrix} 2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1 \end{bmatrix}$$
, let $\mathbf{b} = \begin{bmatrix} 10 \\ 3 \\ 3 \end{bmatrix}$, and let W be

the set of all linear combinations of the columns of A.

- a. Is b in W?
- b. Show that the third column of A is in W.
- 27. A mining company has two mines. One day's operation at mine #1 produces ore that contains 20 metric tons of copper and 550 kilograms of silver, while one day's operation at mine #2 produces ore that contains 30 metric tons of copper and 500 kilograms of silver. Let $v_1 = \left[\begin{array}{c} 20 \\ 550 \end{array}\right]$ and

$$v_2 = \left[\begin{array}{c} 30 \\ 500 \end{array}\right]$$
 . Then v_1 and v_2 represent the "output per day"

of mine #1 and mine #2, respectively.

- a. What physical interpretation can be given to the vector
- b. Suppose the company operates mine #1 for x_1 days and mine #2 for x_2 days. Write a vector equation whose solution gives the number of days each mine should operate in order to produce 150 tons of copper and 2825 kilograms of silver. Do not solve the equation.
- c. [M] Solve the equation in (b).
- 28. A steam plant burns two types of coal: anthracite (A) and bituminous (B). For each ton of A burned, the plant produces 27.6 million Btu of heat, 3100 grams (g) of sulfur dioxide, and 250 g of particulate matter (solid-particle pollutants). For each ton of B burned, the plant produces 30.2 million Btu, 6400 g of sulfur dioxide, and 360 g of particulate matter.
 - a. How much heat does the steam plant produce when it burns x_1 tons of A and x_2 tons of B?
 - b. Suppose the output of the steam plant is described by a vector that lists the amounts of heat, sulfur dioxide, and particulate matter. Express this output as a linear combination of two vectors, assuming that the plant burns x_1 tons of A and x_2 tons of B.
 - c. [M] Over a certain time period, the steam plant produced 162 million Btu of heat, 23,610 g of sulfur dioxide, and 1623 g of particulate matter. Determine how many tons of each type of coal the steam plant must have burned. Include a vector equation as part of your solution.
- **29.** Let $\mathbf{v}_1, \dots, \mathbf{v}_k$ be points in \mathbb{R}^3 and suppose that for j = 1, ..., k an object with mass m_i is located at point \mathbf{v}_j . Physicists call such objects point masses. The total mass of the system of point masses is

$$m = m_1 + \cdots + m_k$$

ivalent to

in Span

lution to

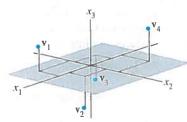
vectors. .]

= 15

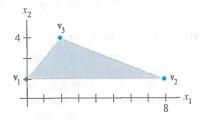
ination of

oination of

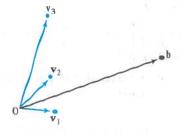
}. For each : the vector sketch.


34 CHAPTER 1 Linear Equations in Linear Algebra

The center of gravity (or center of mass) of the system is


$$\overline{\mathbf{v}} = \frac{1}{m} [m_1 \mathbf{v}_1 + \dots + m_k \mathbf{v}_k]$$

Compute the center of gravity of the system consisting of the following point masses (see the figure):


Point	Mass
$v_1 = (5, -4, 3)$ $v_2 = (4, 3, -2)$ $v_3 = (-4, -3, -1)$ $v_4 = (-9, 8, 6)$	2 g 5 g 2 g 1 g

- 30. Let v be the center of mass of a system of point masses located at v_1, \ldots, v_k as in Exercise 29. Is v in Span $\{v_1, \ldots, v_k\}$? Explain.
- 31. A thin triangular plate of uniform density and thickness has vertices at $v_1 = (0, 1)$, $v_2 = (8, 1)$, and $v_3 = (2, 4)$, as in the figure below, and the mass of the plate is 3 g.

- a. Find the (x, y)-coordinates of the center of mass of the plate. This "balance point" of the plate coincides with the center of mass of a system consisting of three 1-gram point masses located at the vertices of the plate.
- b. Determine how to distribute an additional mass of 6 g at the three vertices of the plate to move the balance point of the plate to (2,2). [Hint: Let w_1 , w_2 , and w_3 denote the masses added at the three vertices, so that $w_1 + w_2 + w_3 = 6$.]
- 32. Consider the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{b} in \mathbb{R}^2 , shown in the figure. Does the equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$ have a solution? Is the solution unique? Use the figure to explain your answers.

33. Use the vectors $\mathbf{u} = (u_1, \dots, u_n)$, $\mathbf{v} = (v_1, \dots, v_n)$, and $\mathbf{w} = (w_1, \dots, w_n)$ to verify the following algebraic properties of \mathbb{R}^n .

a.
$$(u + v) + w = u + (v + w)$$

b.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$
 for each scalar c

34. Use the vector $\mathbf{u} = (u_1, \dots, u_n)$ to verify the following algebraic properties of \mathbb{R}^n .

a.
$$u + (-u) = (-u) + u = 0$$

b.
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$
 for all scalars c and d

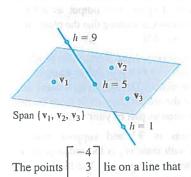
SOLUTIONS TO PRACTICE PROBLEMS

1. Take arbitrary vectors $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ in \mathbb{R}^n , and compute

$$\mathbf{u} + \mathbf{v} = (u_1 + v_1, \dots, u_n + v_n)$$

= $(v_1 + u_1, \dots, v_n + u_n)$

Definition of vector addition


Commutativity of addition in R

Definition of vector addition

2. The vector y belongs to Span $\{v_1, v_2, v_3\}$ if and only if there exist scalars x_1, x_2, x_3 such that

$$x_1 \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} + x_2 \begin{bmatrix} 5 \\ -4 \\ -7 \end{bmatrix} + x_3 \begin{bmatrix} -3 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -4 \\ 3 \\ h \end{bmatrix}$$

This vector equation is equivalent to a system of three linear equations in three unknowns. If you row reduce the augmented matrix for this system, you find that

intersects the plane when h = 5.

of the s with 1-gram

of 6 g palance and w_3 so that

n in the have a explain

 (n_n) , and proper-

ing alge-

mpute

 x_1, x_2, x_3

in three

$$\begin{bmatrix} 1 & 5 & -3 & -4 \\ -1 & -4 & 1 & 3 \\ -2 & -7 & 0 & h \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 3 & -6 & h - 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & -3 & -4 \\ 0 & 1 & -2 & -1 \\ 0 & 0 & 0 & h - 5 \end{bmatrix}$$

The system is consistent if and only if there is no pivot in the fourth column. That is, h-5 must be 0. So y is in Span $\{v_1, v_2, v_3\}$ if and only if h=5.

Remember: The presence of a free variable in a system does not guarantee that the system is consistent.

3. Since the vectors **u** and **v** are in Span $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$, there exist scalars c_1, c_2, c_3 and d_1, d_2, d_3 such that

$$\mathbf{u} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3$$
 and $\mathbf{v} = d_1 \mathbf{w}_1 + d_2 \mathbf{w}_2 + d_3 \mathbf{w}_3$.

Notice

$$\mathbf{u} + \mathbf{v} = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + c_3 \mathbf{w}_3 + d_1 \mathbf{w}_1 + d_2 \mathbf{w}_2 + d_3 \mathbf{w}_3$$

= $(c_1 + d_1) \mathbf{w}_1 + (c_2 + d_2) \mathbf{w}_2 + (c_3 + d_3) \mathbf{w}_3$

Since $c_1 + d_1$, $c_2 + d_2$, and $c_3 + d_3$ are also scalars, the vector $\mathbf{u} + \mathbf{v}$ is in Span $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$.

1.4 THE MATRIX EQUATION Ax = b

A fundamental idea in linear algebra is to view a linear combination of vectors as the product of a matrix and a vector. The following definition permits us to rephrase some of the concepts of Section 1.3 in new ways.

DEFINITION

If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \dots, \mathbf{a}_n$, and if x is in \mathbb{R}^n , then the **product of** A and x, denoted by $A\mathbf{x}$, is the linear combination of the columns of A using the corresponding entries in x as weights; that is,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \cdots + x_n\mathbf{a}_n$$

Note that Ax is defined only if the number of columns of A equals the number of entries in x.

EXAMPLE 1

a.
$$\begin{bmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 3 \\ 7 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ -5 \end{bmatrix} + 7 \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 4 \\ 0 \end{bmatrix} + \begin{bmatrix} 6 \\ -15 \end{bmatrix} + \begin{bmatrix} -7 \\ 21 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

b.
$$\begin{bmatrix} 2 & -3 \\ 8 & 0 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ 8 \\ -5 \end{bmatrix} + 7 \begin{bmatrix} -3 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 32 \\ -20 \end{bmatrix} + \begin{bmatrix} -21 \\ 0 \\ 14 \end{bmatrix} = \begin{bmatrix} -13 \\ 32 \\ -6 \end{bmatrix}$$

EXAMPLE 2 For v_1, v_2, v_3 in \mathbb{R}^m , write the linear combination $3v_1 - 5v_2 + 7v_3$ as a matrix times a vector.