
Math 2270-002  Week 9 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  4.5, 4.6, 4.9,  5.1-5.2.

Mon Oct 22
       4.5, 4.6  Finish general theorems about finite dimensional vector spaces, bases, spanning sets, 
linearly independent sets and subspaces from 4.5; and complete the discussion of the four fundamental 
subspaces, from 4.6.
     

Announcements: 

Warm-up Exercise:

 



Monday Review!   

We've been studying vector spaces, which are a generalization of n.  They occur as subspaces of n; also
as vector spaces and subspaces of matrices, and of function spaces, for example.  There are general 
theorems for vector spaces having to do with questions of linear independence, span, basis, dimension 
that we already understand well for n.  We ended Friday in the midst of a discussion of these theorems, 
and we'll complete that discussion in Part 1 of today's notes.  

We've also been studying and using linear transformations T : V W between vector spaces, which are 
generalizations of matrix transformations T : n m given as T x = A x.  A particularly useful linear 
transformation once if we have a basis = b1, b2,  ... bn  for any vector space V is the coordinate 
transformation isomorphism:

T v = v

T : V n.

The coordinate transformation and its inverse function are helpful because they allow us to translate 
questions about linear independence and span in V into equivalent questions in n, where we already have 
the tools to answer those questions.

For an m n matrix A we've studied the subspaces Nul A n and Col A m, which are the kernel 
and range of the associated linear transformation T x = A x, T : n m.  On Friday we introduced two 
more subspaces connected to the geometry of the matrix transformations T x = A x.   There are Row A 
and Nul AT.  We'll complete the discussion of the four fundamental subspaces associated to matrix 
transformations in Part 2 of today's notes;  we'll see how Row A and Nul A are related to a decomposition 
of the domain n of T, which is analogous to how Col A = row AT  and Nul AT decompose the codomain

m.



There is a circle of ideas related to linear independence, span, and basis for vector spaces, which it is good 
to try and understand carefully.  That's what we'll do today.  These ideas generalize (and use) ideas we've 
already explored more concretely, and facts we already know to be true for the vector spaces n.    (A 
vector space that does not have a basis with a finite number of elements is said to be infinite dimensional.  
For example the space of all polynomials of arbitrarily high degree is an infinite dimensional vector space.  
We often study finite dimensional subspaces of infinite dimensional vector spaces.)

Theorem 1  (constructing a basis from a spanning set):  Let V be a vector space of dimension at least one, 
and let  span v1, v2,  ... vp = V.  
Then a subset of the spanning set is a basis for V.   (We followed a procedure like this to extract bases for 
Col A.)

Theorem 2  Let V be a vector space, with basis = b1, b2,  ... bn .  Then any set in V containing more 
than n elements must be linearly dependent. (We used reduced row echelon form to understand this in n.)
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Theorem 3  Let V be a vector space, with basis = b1, b2,  ... bn .  Then no set  = a1, a2,  ... ap  with 
p n vectors can span V.  (We know this for n.)  

Theorem 4  Let V be a vector space, with basis = b1, b2,  ... bn .  Let  = a1, a2,  ... ap  be a set of 

independent vectors that don't span V.  Then p n, and additional vectors can be added to the set  to 
create a basis  a1, a2,  ... ap, ... an   (We followed a procedure like this when we figured out all the 
subspaces of 3.)

to be confined



Theorem 5  Let Let V be a vector space, with basis = b1, b2,  ... bn .  Then every basis for V has exactly
n vectors.   (We know this for n.)

Theorem 6   Let Let V be a vector space, with basis = b1, b2,  ... bn .  If    = a1, a2,  ... an  is 

another collection of exactly  n vectors in V, and if  span a1, a2,  ... an = V, then the set  is automatically
linearly independent and a basis.  Conversely, if the set a1, a2,  ... an  is linearly independent, then 

span a1, a2,  ... an = V is guaranteed, and  is a basis.  (We know all these facts for n from reduced 
row echelon form considerations.)





Corollary   Let Let V be a vector space of dimension n.  Then the subspaces of V have dimensions 
0, 1, 2,...n 1, n.  (We know this for n.)

Remark  We used the coordinate  transformation isomorphism between a vector space V with basis 
= b1, b2,  ... bn  for Theorem 2, but argued more abstractly for the other theorems.  An alternate 

(quicker) approach is to just note that because the coordinate transformation is an isomorphism it preserves
sets of independent vectors, and maps spans of vectors to spans of the image vectors, so maps subspaces 
to subspaces.  Then every one of the theorems above follows from their special cases in n,  which we've 
already proven.  But this shortcut shortchanges the conceptual ideas to some extent, which is why we've 
discussed the proofs more abstractly.



Part 2:
For an m n matrix A there are actually four interesting subspaces. We've studied the first two of these 
quite a bit:

 Nul A = x n : A x = 0 n 
and

 Col A = b m : b = A x, x n  = span a1, a2, ... an
m.  

(Here we expressed A = a1 a2 ... an   in terms of its columns.)   Through homework and class 
discussions we've understood the rank+nullity Theorem, that  dim Col A  dim Nul A = n.  This theorem 
follows from considerations of the reduced row echelon form of A and is connected to the number of pivot
columns and the number of non-pivot columns in A.  On Friday we introduced the other two of the four 
interesting subspaces connected to A.  These are

Row A  span R1, R2, ... Rm
n, where we write A in terms of its rows, A = 

   R1   

  R2  

:
     Rm    

.

Note that Row A = Col AT.  The final subspace is
Nul AT = y m : AT y = 0 m

Exercise 1:  Using the reduced row echelon form of A  we have realized the following facts.  Let's review 
our reasoning, some of which you understood in last week's homework and all of which we've discussed 
in class.  I've pasted our warm-up discussion from Friday into the following page, where we studied a 
large example in this context:

dim Col A  = # pivot columns in A (=#pivots)

dim Nul A  = # non-pivot columns in A

dim Row A  = # pivot rows in A  (=#pivots) 

dim Nul AT  = # non-pivot columns in AT.

The dim Col A = dim Row A  is called the rank of the matrix A and is the number of pivots in both A 
and AT.  If we call this number "r", then

dim Nul A  = n r
dim Nul AT  = m r.



 Math  2270-002
Friday October 19

Big example of four fundamental subspaces associated to each matrix.        
Here is a matrix and it's reduced row echelon form, from quiz 7, and related matrices

A  

1 1 0 1 5
2 3 1 4 8
2 2 0 2 2
1 2 3 5 1

             row reduces to      

1 0 1 1 0
0 1 1 2 0
0 0 0 0 1
0 0 0 0 0

 

AT =

1 2 2 1
1 3 2 2
0 1 0 3
1 4 2 5
5 8 2 1

 row reduces to 

1 0 0
9
2

0 1 0 3

0 0 1
5
4

0 0 0 0
0 0 0 0

  (A  column reduces to  

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
9
2 3

5
4 0 0

.)

What are  dim Col A , dim Nul A , dim Row A , dim Nul AT ?    Can you find bases for each 
subspace?  How could you find these dimensions in general ?

Example from Friday
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Geometry connected to the four fundamental subspaces:

    First, recall the geometry fact that the dot product of two vectors in n is zero if and only if the vectors
are perpendicular, i.e.

u  v = 0     if and only if u  v .

 (Well, we really only know this in 2 or 3 so far, from multivariable Calculus class. But it's true for all 
n, as we'll see in Chapter 6.)   So for a vector x Nul A we can interpret the equation 

A x = 0

as saying that x is perpendicular to every row of A.  Because the dot product distributes over addition, we 
see that each x  Nul A is perpendicular to every linear combination of the rows of A, i.e.  to all of Row A: 

Row A  Nul A.  

And analogously,

Col A = Row AT  Nul AT  



small example.
T : 2 2 

T
x1

x2
=

1 1

2 2

x1

x2

S
y1

y2
=

1 2

1 2

y1

y2



Here's a general schematic of what's going on, stolen from the internet.  The web site I stole it from looks 
pretty good....

http://www.itshared.org/2015/06/the-four-fundamental-subspaces.html



More details on the decompositions .... we'll cover this in more detail in Chapter 6, but here's what true: In 
the domain n , the two subspaces associated to A are  Row A and Nul A.  Notice that the only vector in 
their intersection is the zero vector, since 

x Row A  Nul A      x  x = 0         x = 0.  

So, let 
u1, u2,  ... ur        be a basis for    Row A

v 1, v 2,  ... v n r       be a basis for Nul A.

Then we can check that set of n vectors obtained by taking the union of the two sets,
u1, u2,  ... ur, v 1, v 2,  ... v n r  

is actually a basis for n.   This is because we can show that the n vectors in the set are linearly 
independent, so they automatically span n and are a basis:  To check independence, let

c1 u1   c2 u2   ...  cr ur   d1 v1   d2 v2   ...  dn r v n r = 0.
then

c1 u1   c2 u2   ...  cr ur =  d1 v1   d2 v2   ...  d n r vn r.

Since the vector on the left is in Row A and the one that it equals on the right is in Nul A, this vector is the 
zero vector:

c1 u1   c2 u2   ...  cr ur =  0 =  d1 v1   d2 v2   ...  dn r vn r.

Since u1, u2,  ... ur  and v 1, v 2,  ... v n r  are each linearly independent sets,  we deduce from these 
two equations that

c1= c2 = ...  = cr = 0,            d1= d2 = ...  = dn r = 0 .
Q.E.D.

So the picture on the previous page is completely general (also for the decomposition of the codomain).   
One can check that the transformation T x = A x restricts to an isomorphism from Row A to Col A, 
because it is 1 1 on these subspaces of equal dimension, so must also be onto.  So, T squashes Nul A, 
and maps every translation of Nul A to a point in Col A.  More precisely, Each

x  n

can be written uniquely as
x = u  v      with u  Row A,  v   Nul A.

and

T u v = T u T v = T u Col A .
As sets,

T u Nul A = T u .



Tues Oct 23
          4.9  Applications to Markov Chains

Announcements: 

Warm-up Exercise:



Example of a Markov Chain:

Example 1:  Consider a model of population movement between a city and its suburbs, described by the 
following schematic.  Every year, 95% of the city dwellers remain in the city, but 5% move to the suburbs;
whereas every year 3% of the suburb dwellers move to the city and 97% stay in the suburbs.  Our goal is 
to study what happens to initial populations distributed between the city and the suburbs, over the course 
of many years.

The way the poulations evolve can be computed using the transition matrix below.  The first column 
encodes the movement from the city to the city and suburbs; the second column encodes the movement 
from the suburbs to the city and suburbs.

M =
.95 .03

.05 .97

Exercise 1a)  If there are initially 600,000 people in the city and 400,000 people in the suburbs, how are 
people distributed one year later?   How about 2 years later?  10 years later?  

Exercise 1b)  If we don't know the total population, but we know that .6 of it is initially in the city, and .4 
of it is initially in the suburbs, how do we compute the fractions in each location in later years?



The previous example is encompassed in the following framework:

Definitions  
a)    A vector in n with non-negative entries which add up to 1 is called a probability vector.  

b)   A square matrix P = p1 p2   ... pn   (in column form) is called a stochastic matrix  if each of its 
columns p1,  p2,   ... pn is a probability vector.

c)   A Markov chain  is a sequence of probability vectors  x0, x1, x2,  .... xk,  ....  such that

x1 = P x0,    x2 = P x1, ....,  xk 1 = P xk  , ....   

(so xk = Pk x0  for k  ).

Markov chains arise in lots of natural situations in science, engineering, economics.  We'll see tomorrow 
that they are connected to google page rank. Here's another example which isn't actually a realistic model, 
but it's the second example in the text and it is at least sort of topical.

Exercise 2  Suppose the voting results of a congressional election at a certain voting precinct are 
represented by a probability vector  x 3:

x = 

fraction Democratic D

fraction Republican R

fraction Libertarian L
.

Suppose we record the outcome of the election every two years using vectors of these type.  Further (and 
this isn't very realisitic), suppose that each election only depends on the results of the preceding one, via 
the following diagram.  Construct the stochastic matrix for the resulting Markov Chain.



Definition:  A stochastic matrix P is called regular if some power of P has all positive entries (as opposed 
to just non-negative).

Definition:  A probability vector q is called a steady state vector for a Markov Chain with transition matrix 
P if 

P q = q. 
(Notice that in this case, if x0 = q then each xk = q as well.)

Long-time behavior of Markov chains:

Theorem  (Perron-Frobenius Theorem)  If P is an n n regular stochastic matrix, then P has a unique 
steady state vector q.  Furthermore, if x0 is any initial state (probability vector) for the Markov chain

xk 1 = P xk                       k = 0, 1, 2,....  

then the Markov chain xk  converges to the steady state q as k .   In particular, since the jth column 

of Pk is Pk ej and ej is an admissable initial state probability vector, each column of Pk converges to q.

Example 3  For the transition matrix from our first example of a city and its suburbs,

M =
.95 .03

.05 .97
.

Computations:

So approximately at least, q
.375

.625
.



Notice that in general the steady state vector q for a regular stochastic matrix P satisfies

P q = q
P q q = 0 

P q  I q = 0

P I  q = 0.

So q is a basis vector for what must be a one-dimensional subspace given by Nul P I .   (It can only be 
one-dimensional since the steady state vector is unique.)  Ahah! a connection to the rest of Chapter 4.   :-) 

Exercise 3  Find the steady state vector for the matrix 

M =
.95 .03

.05 .97
by finding the nullspace of

M I = 
.05 .03

.05 .03
.



Exercise 4  What do these computations have to do with the long-time behavior of the D-R-L voting model
in Exercise 2, with transition matrix

P =

.7 .1 .3

.2 .8 .3

.1 .1 .4
 ?



Wed Oct 24
          4.9 supplement: Google page rank

Announcements: 

Warm-up Exercise:



The Giving Game: Google Page Rank

University of Utah Teachers’ Math Circle

Nick Korevaar

March 24, 2009

Stage 1: The Game

Imagine a game in which you repeatedly distribute something desirable to your friends,
according to a fixed template. For example, maybe you’re giving away “play–doh” or pennies!
(Or it could be you’re a web site, and you’re voting for the sites you link to. Or maybe,
you’re a football team, and you’re voting for yourself, along with any teams that have beaten
you.)

Let’s play a small–sized game. Maybe there are four friends in your group, and at each
stage you split your material into equal sized lumps, and pass it along to your friends,
according to this template:

2

1 3

4

The question at the heart of the basic Google page rank algorithm is: in a voting game
like this, with billions of linked web sites and some initial vote distribution, does the way
the votes are distributed settle down in the limit? If so, sites with more limiting votes must
ultimately be receiving a lot of votes, so must be considered important by a lot of sites, or
at least by sites which themselves are receiving a lot of votes. Let’s play!

1. Decide on your initial material allocations. I recommend giving it all to one person
at the start, even though that doesn’t seem fair. If you’re using pennies, 33 is a
nice number for this template. At each stage, split your current amount into equal
portions and distribute it to your friends, according to the template above. If you have
remainder pennies, distribute them randomly. Play the game many (20?) times, and
see what ultimately happens to the amounts of material each person controls. Compare
results from different groups, with different initial allocations.

2. While you’re playing the giving game, figure out a way to model and explain this
process algebraically!

1



Play the google game!  

Transition matrix for problem 1, to a large power:



Stage 2: Modeling the game algebraically

The game we just played is an example of a discrete dynamical system, with constant tran-
sition matrix. Let the initial fraction of play dough distributed to the four players be given
by

x0 =

⎡

⎢

⎢

⎣

x0,1

x0,2

x0,3

x0,4

⎤

⎥

⎥

⎦

,
4
∑

i=1

x0,i = 1

Then for our game template on page 1, we get the fractions at later stages by

⎡

⎢

⎢

⎣

xk+1,1

xk+1,2

xk+1,3

xk+1,4

⎤

⎥

⎥

⎦

= xk,1

⎡

⎢

⎢

⎣

0
0.5
0.5
0

⎤

⎥

⎥

⎦

+ xk,2

⎡

⎢

⎢

⎣

0
0
1
0

⎤

⎥

⎥

⎦

+ xk,3

⎡

⎢

⎢

⎣

0
0
0
1

⎤

⎥

⎥

⎦

+ xk,4

⎡

⎢

⎢

⎣

0.5
0

0.5
0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xk+1,1

xk+1,2

xk+1,3

xk+1,4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 0 0 0.5
0.5 0 0 0
0.5 1 0 0.5
0 0 1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xk,1

xk,2

xk,3

xk,4

⎤

⎥

⎥

⎦

So in matrix form, xk = Akx0 for the transition matrix A given above.

3. Compute a large power of A. What do you notice, and how is this related to the page
1 experiment?

4. The limiting “fractions” in this problem really are fractions (and not irrational num-
bers). What are they? Is there a matrix equation you could solve to find them, for
this small problem? Hint: the limiting fractions should remain fixed when you play
the game.

5. Not all giving games have happy endings. What happens for the following templates?

(a)

2

1 3

4

2



(b)

2

1 3

4

(c)

2 5

1 3

4 6

(d)

2 5

1 3

4 6

Here’s what separates good giving–game templates, like the page 1 example, from the
bad examples 5a,b,c,d.

Definition: A square matrix S is called stochastic if all its entries are positive, and the
entries in each column add up to exactly one.

Definition: A square matrix A is almost stochastic if all its entries are non–negative, the
entries in each column add up to one, and if there is a positive power k so that Ak is
stochastic.

6. What do these definitions mean vis-à-vis play–doh distribution? Hint: if it all starts
at position j, then the inital fraction vector x0 = ej, i.e. has a 1 in position j and
zeroes elsewhere. After k steps, the material is distributed according to Akej, which is
the jth column of Ak.

3



Stage 3: Theoretical basis for Google page rank

Theorem. (Perron–Frobenius) Let A be almost stochastic. Let x0 be any “fraction vector”
i.e. all its entries are non–negative and their sum is one. Then the discrete dynamical system

xk = Akx0

has a unique limiting fraction vector z, and each entry of z is positive. Furthermore, the
matrix powers Ak converge to a limit matrix, each of whose columns are equal to z.

proof: Let A = [aij ] be almost stochastic. We know, by “conservation of play–doh”, that
if v is a fraction vector, then so is Av. As a warm–up for the full proof of the P.F. theorem,
let’s check this fact algebraically:

n
∑

i=1

(Av)i =
n
∑

i=1

n
∑

j=1

aijvj =
n
∑

j=1

n
∑

i=1

aijvj

=
n
∑

j=1

vj

(

n
∑

i=1

aij

)

=
n
∑

j=1

vj = 1

Thus as long as x0 is a fraction vector, so is each iterate ANx0.
Since A is almost stochastic, there is a power l so that S = Al is stochastic. For any

(large) N , write N = kl + r, where N/l = k with remainder r, 0 ≤ r < l. Then

ANx0 = Akl+rx0 =
(

Al
)k

Arx0 = SkArx0

As N → ∞ so does k, and there are only l choices for Arx0, 0 ≤ r ≤ l− 1. Thus if we prove
the P.F. theorem for stochastic matrices S, i.e. Sky0 has a unique limit independent of y0,
then the more general result for almost stochastic A follows.

So let S = [sij] be an n×n stochastic matrix, with each sij ≥ ε > 0. Let 1 be the matrix
for which each entry is 1. Then we may write:

B = S − ε1; S = B + ε1. (1)

Here B = [bij ] has non–negative entries, and each column of B sums to

1 − nε := µ < 1. (2)

We prove the P.F. theorem in a way which reflects your page 1 experiment: we’ll show
that whenever v and w are fraction vectors, then Sv and Sw are geometrically closer to each
other than were v and w. Precisely, our “metric” for measuring the distance “d” between
two fraction vectors is

d(v,w) :=
n
∑

i=1

|vi − wi|. (3)

Here’s the magic: if v is any fraction vector, then for the matrix 1, of ones,

(1v)i =
n
∑

j=1

1vj = 1.

4



So if v,w are both fraction vectors, then 1v = 1w. Using matrix and vector algebra, we
compute using equations (1), (2):

Sv − Sw = (B + ε1)v − (B + ε1)w (4)

= B(v −w)

So by equation (3),

d(Sv, Sw) =
n
∑

i=1

∣

∣

∣

∣

∣

n
∑

j=1

bij(vj − wj)

∣

∣

∣

∣

∣

(5)

≤
n
∑

i=1

n
∑

j=1

bij |vj − wj|

=
n
∑

j=1

|vj − wj|
n
∑

i=1

bij

= µ
n
∑

j=1

|vj − wj |

= µd(v,w)

Iterating inequality (5) yields

d(Skv, Skw) ≤ µkd(v,w). (6)

Since fraction vectors have non–negative entries which sum to 1, the greatest distance be-
tween any two fraction vectors is 2:

d(v,w) =
n
∑

i=1

|vi − wi] ≤
n
∑

i=1

vi + wi = 2

So, no matter what different initial fraction vectors experimenters begin with, after k iter-
ations the resulting fraction vectors are within 2µk of each other, and by choosing k large
enough, we can deduce the existence of, and estimate the common limit z with as much
precision as desired. Furthermore, if all initial material is allotted to node j, then the initial
fraction vector ej has a 1 in position j and zeroes elsewhere. Skej, (or ANej) is on one hand
the jth column of Sk (or AN), but on the other hand is converging to z. So each column of
the limit matrix for Sk and AN equals z. Finally, if x0 is any initial fraction vector, then
S(Skx0) = Sk+1(x0) is converging to S(z) and also to z, so S(z) = z (and Az = z). Since
the entries of z are non–negative (and sum to 1) and the entries of S are all positive, the
entries of Sz (= z) are all positive. ¨

5



Stage 4: The Google fudge factor

Sergey Brin and Larry Page realized that the world wide web is not almost stochastic.
However, in addition to realizing that the Perron–Frobenius theorem was potentially useful
for ranking URLs, they figured out a simple way to guarantee stochasticity—the “Google
fudge factor.”

Rather than using the voting matrix A described in the previous stages, they take a
combination of A with the matrix of 1s we called 1. For (Brin an Pages’ choice of) ε = .15
and n equal the number of nodes, consider the Google matrix

G = (1 − ε)A +
ε

n
1.

(See [Austin, 2008]).
If A is almost stochastic, then each column of G also sums to 1 and each entry is at least

ε/n. This G is stochastic! In other words, if you use this transition matrix everyone gets a
piece of your play–doh, but you still get to give more to your friends.

7. Consider the giving game from 5c. Its transition matrix

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 .5 0 0
.5 0 0 0 0 0
.5 1 0 .5 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

is not almost stochastic. For ε = .3 and ε/n = .05, work out the Google matrix G,
along with the limit rankings for the six sites. If you were upset that site 4 was ranked
as equal to site 3 in the game you played for stage 1, you may be happier now.

Historical notes

The Perron–Frobenius theorem had historical applications to input–output economic mod-
eling. The idea of using it for ranking seems to have originated with Joseph B. Keller, a
Stanford University emeritus mathematics professor. According to a December 2008 article
in the Stanford Math Newsletter [Keller, 2008], Professor Keller originally explained his team
ranking algorithm in the 1978 Courant Institute Christmas Lecture, and later submitted an
article to Sports Illustrated in which he used his algorithm to deduce unbiased rankings for
the National League baseball teams at the end of the 1984 season. His article was rejected.
Utah professor James Keener visited Stanford in the early 1990s, learned of Joe Keller’s idea,
and wrote a SIAM article in which he ranked football teams [Keener, 1993].

Keener’s ideas seem to have found their way into some of the current BCS college football
ranking schemes which often cause boosters a certain amount of heartburn. I know of no
claim that there is any direct path from Keller’s original insights, through Keener’s paper, to
Brin and Pages’ amazing Google success story. Still it is interesting to look back and notice
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that the seminal idea had been floating “in the air” for a number of years before it occurred
to anyone to apply it to Internet searches.

Acknowledgement: Thanks to Jason Underdown for creating the graph diagrams and
for typesetting this document in LATEX.
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         5.1-5.2  Eigenvectors and eigenvalues for square matrices

Announcements: 

Warm-up Exercise:



Eigenvalues and eigenvectors for square matrices.

The steady state vectors for stochastic matrices in section 4.9, i.e. the vectors x with P x = x when P is 
stochastic, are a special case of the concept of eigenvectors and eigenvalues for general square matrices, as 
we'll see below.

To introduce the idea of eigenvalues and eigenvectors we'll first think geometrically.

Example   Consider the matrix transformation T : 2 2 with formula

T
x1

x2
=

3 0

0 1

x1

x2
= x1

3

0
x2

0

1
 .

Notice that for the standard basis vectors e1 = 1, 0 T, e2 = 0 , 1 T 
T e1 = 3e1 
T e2 = e2  .

The facts that T is linear and that it transforms e1, e2 by scalar multiplying them, lets us understand the 
geometry of this transformation completely: 

T
x
1

x
2

= T x
1
e
1

x
2
e
2

= x
1
T e

1
x
2
T e

2
  

                           = x
1

3e
1

x
2

1e
2

  .

In other words, T stretches by a factor of 3 in the e1 direction, and by a factor of 1 in the e2 direction, 
transforming a square grid in the domain into a parallel rectangular grid in the image:



Definition:  If An n and if A v =  v for a scalar  and a vector v 0  then v is called an eigenvector of A ,

and  is called the eigenvalue of v .  (In some texts the words characteristic vector and characteristic value 
are used as synonyms for these words.)

  In the example above, the standard basis vectors (or multiples of them) are eigenvectors, and the 
corresponding eigenvalues are the diagonal matrix entries.  A non-diagonal matrix may still have 
eigenvectors and eigenvalues, and this geometric information can still be important to find.  (For example, 
a stochastic matrix P always has eigenvectors with eigenvalue 1, namely the steady-state vector and its 
multiples are the eigenvectors.  But how do you find eigenvectors and eigenvalues for general non-
diagonal matrices? ...

Exercise 2)  Try to find eigenvectors and eigenvalues for the non-diagonal matrix, by just trying random 
input vectors x and computing A x.

A =
3 2

1 2
 .



How to find eigenvalues and eigenvectors (including eigenspaces) systematically:

If
           A v =  v 

A v  v = 0       

A v  I v = 0          
where I is the identity matrix.

 A  I v = 0 .

As we know, this last equation can have non-zero solutions v if and only if the matrix A  I  is not 
invertible, i.e. 

det A  I = 0 .

So, to find the eigenvalues and eigenvectors of matrix you can proceed as follows:

     Compute the polynomial in λ 
p = det A  I  .

If An n then p  will be degree n.  This polynomial is called the characteristic polynomial of the matrix 
A. 

     j can be an eigenvalue for some non-zero eigenvector v if and only if it's a root of the characteristic 

polynomial, i.e. p j = 0.  For each such root, the homogeneous solution space of vectors v solving

A j I v = 0 

will be eigenvectors with eigenvalue j.  This subspace of eigenvectors will be at least one dimensional, 

since A j I  does not reduce to the identity and so the explicit homogeneous solutions will have free 
parameters.  Find a basis of eigenvectors for this subspace.  Follow this procedure for each eigenvalue, i.e.
for each root of the characteristic polynomial.

Notation:  The subspace of eigenvectors for eigenvalue j is called the j eigenspace, and we'll denote it by
E

=
j
 .     The basis of eigenvectors is called an eigenbasis for E

j
 . 



Exercise 3)  a)  Use the systematic algorithm to find the eigenvalues and eigenbases for the non-diagonal 
matrix of Exercise 2.

A =
3 2

1 2
 .

b)  Use your work to describe the geometry of the linear transformation in terms of directions that get 
scaled:

T
x1

x2
=

3 2

1 2

x1

x2
.



Exercise 4)  Find the eigenvalues and eigenspace bases for

B :=

4 2 1

2 0 1

2 2 3
 .

(i)  Find the characteristic polynomial and factor it to find the eigenvalues.

(ii) for each eigenvalue, find bases for the corresponding eigenspaces.

(iii) Can you describe the transformation T x = Bx geometrically using the eigenbases?  Does det B  
have anything to do with the geometry of this transformation?



Your solution will be related to the output below:

In all of our new examples so far, it turns out that by collecting bases from each eigenspace for the matrix 
An n, and putting them together, we get a basis for n .  This lets us understand the geometry of the 
transformation

T x = A x  
almost as well as if A is a diagonal matrix.  This is actually something that does not always happen for a 
matrix A.  When it does happen, we say that A is diagonalizable.  Here's an example of a matrix which is 
NOT diagonalizable:

Exercise 5:  Find matrix eigenvalues and eigenspace basis for each eigenvalue, for

A =
3 2

0 3
 .

Explain why there is no basis of 2 consisting of eigenvectors of A.


