
Math 2270-002  Week 5 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  2.1-2.3 and 3.1.

Mon Sept 17
       2.1-2.2  Matrix algebra and matrix inverses, continued

Announcements: 

Warm-up Exercise:



On Friday we began talking about matrix algebra and matrix inverses.  The matrix addition and scalar 
multiplication rules are just like for vectors.  

Matrix multiplication is more interesting, and corresponds to the composition of the associated linear 
transformations.  More precisely,  we checked the following with an example and in general:

Definition:  if B is a p m matrix and A = a1, a2 ... an  is an m n  matrix, then B A is a p n matrix 
which can be computed column by column as

B A  B a1 B a2  ...   B an   .

Equivalently, 
entryi j B A = rowi B   colj A .

Theorem:  The matrix B A is the matrix for the composition function  T2 T1 : n p, where
T1 : n m,   T1 x  = A x,      Am n .

  
T2 : m p,   T2 y  = B y.      Bp m 

In other words, 
T2 T1 x  = B A x  = BA x .



Matrix addition and multiplication have algebra rules which are like those for scalars, except that matrix 
multiplication does not commute:

Check some of the following.  Let In be the n n identity matrix, with In x = x   for all x n .  Let 
A, B, C have compatible dimensions so that the indicated expressions make sense.  Then

a   A B C = AB C    (associative property of multiplication)

b  A B C  = A B  A C     (left distributive law)

c     A B  C = A C  B C    (right distributive law)

d     r AB = rA  B = A rB      for any scalar r.

e)   If Am n  then Im A = A  and A In = A .

Warning:  AB BA in general.  In fact, the sizes won't even match up if you don't use square matrices.



The transpose operation.  One reason for considering this particular operation will be more clear by the 
beginning of next week, but since the text introduces it in section 2.1, we will as well.

Definition:  Let Bm n = bi j  .  Then the transpose of B,  denoted by BT is an n m matrix defined by

entryi j BT entryj i B = bj i .

The effect of this definition is to turn the columns of B into the rows of BT :
entryi colj B = bi j .

entryi rowj BT = entryj i BT = bi j .

And to turn the rows of B into the columns of BT:
entryj rowi B = bi j 

entryj coli BT = entryj i BT = bi j .

Exercise 1)  explore these properties with the identity

1 2 3

4 5 6

T

=

1 4

2 5

3 6
 .

Algebra of transpose:

a    AT T 
= A  

b     A B T = AT  BT  

c    for every scalar r   rA T = r AT  

d  (The only surprising property, so we should check it.)  A B T = BT AT  



Matrix inverses:  A square matrix An n is invertible if there is a matrix Bn n so that
AB = BA = I .

In this case we call B the inverse of A, and write B = A 1 .

Remark 1:   A matrix A can have at most one inverse, because if we have two candidates B, C with
AB = BA = I    and also    AC = CA = I 

then
BA C = IC = C  

B AC = BI = B 
so since the associative property BA C = B AC  is true, it must be that

B = C.  

Remark 2:   In terms of linear transformations, if T : n n is the linear transformation T x = A x,  then
saying that A has an inverse matrix is the same as saying that T has an inverse linear transformation, 
T 1 : n n  with matrix B so that T 1 T x = x   x n  and  T T 1 y = y  y n.   

Exercise 2a  On Friday we verified that for A =
1 2

3 4
 the inverse matrix is B = A 1 =

2 1

3
2

1
2

 .  



Inverse matrices can be useful in solving algebra problems.  For example

Theorem:  If A 1 exists then the only solution to Ax = b is x = A 1b .

Exercise 2b  On Friday we used the theorem and A 1 in 2a, to write down the solution to the system
x 2 y = 5  

3 x 4 y = 6      



Corollary (of the Theorem on the previous page): If A 1 exists, then the reduced row echelon form of A is 
the identity matrix.
proof:  For a square matrix, solutions to A x = b  always exist and are unique precisesly when A reduces to
the identity.  When A 1 exists,  the solutions to A x = b exist and are unique.  So, when A 1 exists, A 
reduces to the identity.

Exercise 3   Assuming A is a square matrix with an inverse A 1, and that the matrices in the equation 
below have dimensions which make for meaningful equation, use matrix algebra to solve for X in terms of 
the other matrices:

XA C = B



But where did that formula for A 1 come from, in our earlier example?

One Answer:  Consider A 1 as an unknown matrix, A 1 = X .  We want
A X = I .

We can break this matrix equation down by the columns of X = x1 x2 . In the two by two case we get:

A x1 x2 =
1

0

0

1
 .

In other words, the two columns of the inverse matrix X should satisfy

A x1 =
1

0
,   A x2 =

0

1
  .

We can solve for both of these mystery columns at once, as we've done before when we had different right
hand sides:

Exercise 4:  Reduce the double augmented matrix
1 2

3 4

1

0

0

1
 

to find the two columns of A 1 for the example in exercise 1.



For 2 2 matrices there's also a cool formula for inverse matrices:

Theorem:  
a b

c d

1

 exists if and only if the determinant D = ad bc of  
a b

c d
 is non-zero.  And in 

this case,

 
a b

c d

1

=
1

ad bc
d b

c a
 

(Notice that the diagonal entries have been swapped, and minus signs have been placed in front of the off-
diagonal terms.  This formula should be memorized.)

Exercise 5)  Check that the magic formula reproduces the answer you got in Exercise 4 for 

1 2

3 4

1

  

Remark)  If ad bc = 0  then A does not reduce to the identity.



Exercise 6:  Will this always work?  Can you find A 1 for 

A :=

1 5 1

2 5 0

2 7 1
 ?



Exercise 7)  Will this always work?  Try to find B 1 for B :=

1 5 5

2 5 0

2 7 4
 .

Here's what happens when we try to find the three columns of B 1:

BaugI  

1 5 5 1 0 0

2 5 0 0 1 0

2 7 4 0 0 1
                   rref BaugI =

1 0 5 0
7
4

5
4

0 1 2 0
1
2

1
2

0 0 0 1
3
4

5
4



Tues Sept 18
       2.2-2.3  Matrix inverses

Announcements: 

Warm-up Exercise:



Theorem:  Let An n be a square matrix.  Then A has an inverse matrix if and only if its reduced row 
echelon form is the identity.  In this case the algorithm illustrated in our examples from yestereday will 
yield A 1.

explanation:  By the theorem we discussed on Monday, when A 1exists, the  linear systems
A x = b 

always have unique solutions (x = A 1b .  From our previous discussions about reduced row echelon 
form, we know that for square matrices, solutions to such linear systems exist and are unique if and only if
the reduced row echelon form of A is the identity matrix.   Thus by logic, whenever A 1exists, A reduces to
the identity.

In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation
A X = I 

i.e. writing X = x1 x2  ... xn  in terms of its columns, we wish to solve

A x1 x2 .... xn  = 

1

0

0

0

0

1

0

0

....

0

0

0

1

   

Because A reduces to the identity matrix, we may solve for X column by column as in the examples we've 
worked, by using a chain of elementary row operations:

 A  I I  B  .

We deduce that the columns of X are exactly the columns of B, i.e. X = B.  Thus we know that
A B = I .

To realize that B A = I as well, we would try to solve B Y = I for Y, and hope Y = A .  But we can actually 
verify this fact by reordering the columns of I  B  above to read B  I  and then reversing each of the 
elementary row operations in the first computation, i.e. create the reversed chain of elementary row 
operations,

B  I I  A  .

so B A = I also holds.  (This is one of those rare times when matrix multiplication actually is commuative.) 

To summarize:  If A 1 exists, then solutions x to A x = b always exist and are unique, so the reduced row 
echelon form of A is the identity.  If the reduced row echelon form of A is the identity, then A 1 exists, 
because we can find it using the algorithm above.  That's exactly what the Theorem claims.



Saying the same thing in lots of different ways  (important because it ties a lot of our Chapter 1-2 ideas 
together):  Can you explain why these are all equivalent?

The invertible matrix theorem  (page 114)

Let A be a square n n matrix.  Then the following statements are equivalent.  That is, for a given A, the 
statements are either all true or all false.

a)  A is an invertible matrix.

b)  The reduced row echelon form of A is the n n identity matrix.

c)  A has n pivot positions

d)  The equation A x = 0 has only the trivial solution x = 0.

e)  The columns of A form a linearly independent set.



f)  The linear transformation T x A x is one-one.

g)  The equation A x = b has at least one solution for each b n.

h)  The columns of A span n .

i)  The linear transformation T x A x maps n onto n.

j)  There is an n n  matrix C  such that C A = I.

k)  There is an n n matrix D such that A D = I.



l)  AT  is an invertible matrix.



Wed Sept 19
       2.2-2.3  Matrix inverses:  the product of elementary matrices approach to matrix inverses

Announcements: 

Warm-up Exercise:



Exercise 1)  Show that if A, B, C are invertible matrices, then

A B 1 = B 1 A 1.
ABC 1 = C 1B 1A 1

Theorem  The product of n n invertible matrices is invertible, and the inverse of the product is the 
product of their inverses in reverse order.



Our algorithm for finding the inverse of a matrix can be reformulated in terms of a product of so-called 
"elementary" matrices.  This product idea will pay off elsewhere.  To get started, let's notice an analog of 
the fact that a matrix times a vector is a linear combination of the matrix columns.  That was in fact how we
defined matrix times vector in week 2.

Definition (from 1.4)  If A is an m n matrix, with columns a1, a2,  ... an (in m) and if x n , then 
A x is defined to be the linear combination of the columns, with weights given by the corresponding entries
of x.  In other words,

A x = a1  a2   ... an  x x1 a1  x2 a2   ... xn an .

Theorem  If we multiply a row vector times an n m matrix B we get a linear combination of the rows of 
B:  proof:  We want to check whether

xT B = x1 x2 ... xn

b1

b1

:

bn

= x1 b1  x2 b2   ... xn bn .

where the rows of B are given by the row vectors b1, b2, ... bn.  This proposed identity is true if and only if
its transpose is a true identity.  But the transpose of the left side is

xT B T = BT x T
T

=  BT x     

=  b1
T  b2

T   ... bn
T  x  

x1 b1
T  x2 b2

T   ... xn bn
T

which is the transpose of the right side of the proposed identity.  So the identity is true.
Q.E.D.



Exercise 2a  Use the Theorem on the previous page and work row by row on so-called "elementary 
matrix" E1 on the right of the product below,  to show that E1 A is the result of replacing row3 A  with 
row3 A 2 row1 A , and leaving the other rows unchanged:

1 0 0

0 1 0

2 0 1

a11 a12 a13

a21 a22 a23

a31 a32 a33

  =                    

2b)  The inverse of E1 must undo the original elementary row operation, so must replace any row3 A  
with row3 A 2 row1 A .  So it must be true that

E1
1 =

1 0 0

0 1 0

2 0 1
.

Check!

2c)   What 3 3 matrix E2 can we multiply times A, in order to multiply row2 A  by 5 and leave the other 

rows unchanged. What is  E2
1 ?

2d)  What 3 3 matrix E3 can we multiply time A, in order to swap row1 A  with row3 A ?   What is 

E3
1 ?



Definition  An elementary matrix E  is one that is obtained by doing a single elementary row operation on 
the identity matrix.    

Theorem  Let Em m be an elementary matrix.  Let  Am n.   Then the product E A is the result of doing the 
same elementary row operation to A that was used to construct E from the identity matrix.

Algorithm for finding A 1 re-interpreted:   Suppose a sequence of elementary row operations reduces the 
n n square matrix A to the identity In.  Let the corresponding elementary matrices, in order, be given by

E1, E2 , ...   Ep.
Then we have

Ep Ep 1 .... E2 E1 A ...  = In 
 

Ep Ep 1 .... E2 E1 A = In .

So, 

A 1 = Ep Ep 1 .... E2 E1.

Notice that 

Ep Ep 1 .... E2 E1 = Ep Ep 1 .... E2 E1 In  

so we have obtained A 1by starting with the identity matrix, and doing the same elementary row operations
to it that we did to A, in order to reduce A to the identity.  I find this explanation of our original algorithm to
be somewhat convoluted, but as I said, the matrix product decomposition idea is going to pay dividends 
elsewhere.

Also, notice that we have ended up "factoring" A into a product of elementary matrices:

A = A 1 1
 =  Ep Ep 1 .... E2 E1

1 = E1
1 E2

1 .... Ep 1
1  Ep

1  .



Friday Sept 21
          3.1 introduction to determinants

Announcements: 

Warm-up Exercise:



Determinants are scalars defined for square matrices An n  They always determine whether or not the 

inverse matrix A 1 exists, (i.e. whether the reduced row echelon form of A is the identity matrix):  In fact, 
the determinant of A is non-zero if and only if A 1 exists. The determinant of a 1 1 matrix a11  is 
defined to be the number a11; determinants of 2 2 matrices are defined as in yesterday's notes; and in 
general determinants for n n matrices are defined recursively, in terms of determinants of 
n 1 n 1  submatrices:

Definition:  Let An n = ai j  .  Then the determinant of A, written det A  or A  , is defined by

det A
j = 1

n

a1 j 1 1 jM1 j =
j = 1

n

a1 jC1 j .

Here M1 j is the determinant of the n 1 n 1  matrix obtained from A by deleting the first row 

and the jth column, and C1 j is simply 1 1 jM1 j .

More generally, the determinant of the n 1 n 1  matrix obtained by deleting row i and column j 
from A is called the i j Minor Mi j  of A, and Ci j 1 i jMi j is called the i j Cofactor of A .

Exercise 1  Check that the messy looking definition above gives the same answer we talked about 
yesterday in the 2 2 case, namely

a11 a12

a21 a22
=  a11a22   a21 a12 .



from the last page, for our convenience:

Definition:  Let An n = ai j  .  Then the determinant of A, written det A  or A  , is defined by

det A
j = 1

n

a1 j 1 1 jM1 j =
j = 1

n

a1 jC1 j .

Here M1 j is the determinant of the n 1 n 1  matrix obtained from A by deleting the first row 

and the jth column, and C1 j is simply 1 1 jM1 j .

Exercise 2   Work out the expanded  formula for the determinant of a 3 3 matrix.  It's not worth 
memorizing (as opposed to the recursive formula above), but it's good practice to write out at least once, 
and we might point to it later.

a11 a12 a13

a21 a22 a23

a31 a32 a33

   =   



Theorem:  det A  can be computed by expanding across any row, say row i: 

det A
j = 1

n

ai j 1 i jMi j =
j = 1

n

ai jCi j

or by expanding down any column, say column j: 

det A
i = 1

n

ai j 1 i jMi j =
i = 1

n

ai jCi j .

Exercise 3a)  Let A :=

1 2 1

0 3 1

2 2 1
 .  Compute det A  using the definition.  (On the next page we'll use 

other rows and columns to do the computation.)



From previous page,

A :=

1 2 1

0 3 1

2 2 1
 .

3b)  Verify that the matrix of all the cofactors of A is given by Ci j =

5 2 6

0 3 6

5 1 3
 .  Then expand 

det A  down various columns and rows using the ai j factors and Ci j cofactors.  Verify that you always 
get the same value for det A , as the Theorem on the previous page guarantees. Notice that in each case 
you are taking the dot product of a row (or column) of A with the corresponding row (or column) of the 
cofactor matrix.

A :=

1 2 1

0 3 1

2 2 1
             Ci j =

5 2 6

0 3 6

5 1 3
      



3c)  What happens if you take dot products between a row of A and a different row of Ci j  ?  A column 
of A and a different column of Ci j  ?   The answer may seem magic.  We'll come back to this example 
when we talk about the magic formula for the inverses of 3 3  (or n n) invertible matrices.

A :=

1 2 1

0 3 1

2 2 1
             Ci j =

5 2 6

0 3 6

5 1 3
       



Exercise 4)  Compute the following determinants by being clever about which rows or columns to use:

4a)  

1 38 106 3

0 2 92 72

0 0 3 45

0 0 0 2

 ;                             4b)   

1 0 0 0
2

2 0 0

0.476 88 3 0

1 22 33 2

 .

Exercise 5)  Explain why it is always true that for an upper triangular matrix (as in 2a), or for a lower 
triangular matrix (as in 2b), the determinant is always just the product of the diagonal entries.



Fri Sept 21
          3.1 determinants 

Announcements: 

Warm-up Exercise:



Determinants are scalars defined for square matrices An n  They always determine whether or not the 

inverse matrix A 1 exists, (i.e. whether the reduced row echelon form of A is the identity matrix):  In fact, 
the determinant of A is non-zero if and only if A 1 exists. The determinant of a 1 1 matrix a11  is 
defined to be the number a11.  (And whether or not a11 = 0 determines if it doesn't or does have a 
multiplicative inverese.)  Determinants of 2 2 matrices are defined as in or magic formula for inverse 
matrices, in the 2 2 case; and in general determinants for n n matrices are defined recursively, in terms 
of determinants of n 1 n 1  submatrices:

Definition:  Let An n = ai j  .  Then the determinant of A, written det A  or A  , is defined by

det A
j = 1

n

a1 j 1 1 jM1 j =
j = 1

n

a1 jC1 j .

Here M1 j is the determinant of the n 1 n 1  matrix obtained from A by deleting the first row 

and the jth column, and C1 j is simply 1 1 jM1 j .

More generally, the determinant of the n 1 n 1  matrix obtained by deleting row i and column j 
from A is called the i j Minor Mi j  of A, and Ci j 1 i jMi j is called the i j Cofactor of A .

Exercise 1  Check that the messy looking definition above gives the same answer we talked about in 
regards to our formula for the inverse of 2 2 matrices, namely

a11 a12

a21 a22
=  a11a22   a21 a12 .



from the last page, for our convenience:

Definition:  Let An n = ai j  .  Then the determinant of A, written det A  or A  , is defined by

det A
j = 1

n

a1 j 1 1 jM1 j =
j = 1

n

a1 jC1 j .

Here M1 j is the determinant of the n 1 n 1  matrix obtained from A by deleting the first row 

and the jth column, and C1 j is simply 1 1 jM1 j .

Exercise 2   Work out the expanded  formula for the determinant of a 3 3 matrix.  It's not worth 
memorizing (as opposed to the recursive formula above), but it's good practice to write out at least once, 
and we might point to it later.

a11 a12 a13

a21 a22 a23

a31 a32 a33

   =   



Exercise 3a)  Let A :=

1 2 1

0 3 1

2 2 1
 .  Compute det A  using the definition.  (On the next page we'll use 

other rows and columns to do the computation.)

Theorem:  det A  can be computed by expanding across any row, say row i: 

det A
j = 1

n

ai j 1 i jMi j =
j = 1

n

ai jCi j

or by expanding down any column, say column j: 

det A
i = 1

n

ai j 1 i jMi j =
i = 1

n

ai jCi j .

(proof is not so easy - our text skips it and so will we.  If you look on Wikipedia you'll see that the 
determinant is actually a sum of n factorial terms, each of which is  a product of n entries of A where 
each product has exactly one entry from each row and column.  The  sign has to do with whether the 
corresponding permutation is even or odd.  You can verify this pretty easily for the 2 2 and 3 3 cases. 
Then one shows inductively that each row or column cofactor expansion reproduces this sum, in the n n 
case.)



From previous page,

A :=

1 2 1

0 3 1

2 2 1
 .

3b)  Verify that the matrix of all the cofactors of A is given by Ci j =

5 2 6

0 3 6

5 1 3
 .  Then expand 

det A  down various columns and rows using the ai j factors and Ci j cofactors.  Verify that you always 
get the same value for det A , as the Theorem on the previous page guarantees. Notice that in each case 
you are taking the dot product of a row (or column) of A with the corresponding row (or column) of the 
cofactor matrix.

A :=

1 2 1

0 3 1

2 2 1
             Ci j =

5 2 6

0 3 6

5 1 3
      



3c)  What happens if you take dot products between a row of A and a different row of Ci j  ?  A column 
of A and a different column of Ci j  ?   The answer may seem magic.  

A :=

1 2 1

0 3 1

2 2 1
             Ci j =

5 2 6

0 3 6

5 1 3
       



3d)  The adjoint matrix is defined to be the transpose of the cofactor matrix.  So in our example,

A :=

1 2 1

0 3 1

2 2 1
                 adj A = cof A T =

5 0 5

2 3 1

6 6 3
.

Reinterpret your work in 3bc to say that

1 2 1

0 3 1

2 2 1

5 0 5

2 3 1

6 6 3
=

15 0 0

0 15 0

0 0 15
.

So, in this case - and in fact always,  the magic formula for A 1 is given by

A 1 = 
1

det A
adj A .

It seems like magic now, but we'll be able to understand why it's true after we learn about more 
determinant properties on Wednesday and Friday.



Exercise 4)  Compute the following determinants by being clever about which rows or columns to use:

4a)  

1 38 106 3

0 2 92 72

0 0 3 45

0 0 0 2

 ;                             4b)   

1 0 0 0
2

2 0 0

0.476 88 3 0

1 22 33 2

 .

Exercise 5)  Explain why it is always true that for an upper triangular matrix (as in 2a), or for a lower 
triangular matrix (as in 2b), the determinant is always just the product of the diagonal entries.


