Math 2270-002 Week 2 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes cover material in 1.3-1.6. They include material from last weeks notes that we
did not get to.

1.3 vector equations

1.4 matrix equations encompass vector equations and linear systems of equations

1.5 structure of solution sets to matrix equations

1.6 some applications
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1.3 algebra and geometry for vector equations and linear combinations
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On Friday we defined vectors algebraically, as ordered lists of numbers. And, we defined vector addition

and scalar multiplication, which you've worked with in previous courses, although maybe only in
R, R2, R3:

u v, u, + v, cu,
u, vy u, + vV, cu,
Definition: Foru = , V= eRyce R, then u+y:= ;ocu =
u % u +v cu
n n n n n

There are a number of straightforward algebra identities for vector addition and scalar multiplication.
These all reduce to real number axioms when one looks at the individual entries of the vectors on each side
of the identities:

Letu,y,w € R", c¢,d € R. Then

(1) ut+v=v+u 2.0 evaai (Bf+7) = v, > U\“"] b cauge veal] X m&&r‘m'm

%j‘w%{ (-\; . :\ = vphug s bow\mu‘{’A']’l‘Ve

(i) (w+p)+tw=u+(r+w) ”““L'é" ((a’+6)+7v) = (up#vy) £ W S nal becanse

read ¥ edddp-

) - - . . .
wjrva{ ( nt (Tan) = 4—(\,‘*\«/1) v assou‘«—.L'le

(i) #+0=0+u=u (0isdefined to be the vector for which each entry is the number 0.)

(iv) w+ (-u)=(-u)+u=0 (-uis defined to be - 1-u, i.e. the vector for which each entry is the
opposite of the corresponding entry in u.)

(vi) (c+du=cu+du
(vii) c(du) = (cd)u

(viii) lu=u .



Geometric interpretation of vectors as displacements

The space [R” may be thought of in two equivalent ways. In both cases, R” consists of all possible

n — tuples of numbers:

(1) We can think of those n — tuples as representing points, as we're used to doing for n =1, 2, 3. In this

case we can write

Rr = {(xl,xz,...,xn),s.t. X5 Xppeees X, € [R}.

(i) We can think of those n — fuples as representing vectors that we can add and scalar multiply. In this

case we can write

Rr =

Since algebraic vectors (as above) can be used to measure geometric displacement, one can identify the two
models of [R” as sets by identifying each point (xl, X)X, ) in the first model with the displacement vector

Ka

, S.t. xl, xz,...,x eR

xX= [xl , 2,...xm]T from the origin to that point, in the second model, i.e. the "position vector" of the point.
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3a) Plot the points (1,-1) and (1, 3), which have position vectors u, v.
arrows beginning at the origin and ending at the corresponding points.

1
-1

Exercise 3) Let u=
KF r\'A A\I )

and y =

Draw these position vectors as

3b) Compute u + y and then plot the point for which this is the position vector. Note that the algebraic
operation of vector addition corresponds to the geometric process of composing horizontal and vertical

displacements. {\ . l (=
“| ,% - 9

3c) Computeu and 2 y and u + 2 y plot the corresponding points for which these are the position

vectors. 4
27 = [ - (2 R 2T = ET@]T[S}
z = - (2,6)
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Plot the parametric line segment whose points are the endpoints of the position vectOrs
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One of the key themes of this course is the idea of "linear combinations". These have an algebraic
definition, as well as a geometric interpretation as combinations of displacements.

Definition: If we have a collection of n vectors { v v } in R”, then any vector y € R” that can be

v, ..
l 2 —27 7
expressed as a sum of scalar multiples of these vectors is called a linear combination of them. In other
words, if we can write

y=cy, +cy, + .. +cpv

then y is a linear combination of LIPRUPER A The scalars Cps Cypeess €, ATE called the linear combination

coefficients or weights.
\

Example You've probably seen linear combinations in previous math/physics classes, even if you didn't

realize it. For example you might have expressed the position vector r as a linear combination
r=xit+yji+tzk = <x,y17

where i, j, K represent the unit displacements in the x, y, z directions. Since we can express these

displacements using Math 2270 notation as

1 0 0
i=|0Lj=|1Lk=[0
0 0 1
we have
1 0 0 X

xi+yj+zk=x|0|+y| 1 |[+z|0 =]y
0 0 1 z



Exercise 2) Can you get to the point (-2, 8) € R?, from the origin (0, 0) , by moving only in the (+)

directions of u =

problem

1
andy=

1
-1

X

+x

F

-2

8

? Algebraically, this means we want to solve the linear combination

2a) Superimpose a grid related to the displacement vectors u, ¥ onto the graph paper below, and, recalling

that vector addition yields net displacement, and scalar multiplication yields scaled displacement, try to
approximately solve the linear combination problem above, geometrically.

2b) Rewrite the linear combination problem as a linear system and

* s71ve it exactly,ﬁlgebraically!! L
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2¢) Can you get to any point (x, y) in [R2, starting at (0, 0) and moving only in directions parallel to u, ¥ ?

X
Argue geometrically and algebraically. How many ways are there to express

as a linear combination

ofuandy?
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collection of vectors, written as span{ Y, P, .. } is the collect10n (A
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Examples using this language: / S oo .- iv—v’:c'j.\.(v o k.
* We showed in 2¢ that span {u, »} = R 5‘70\‘4{‘«,"‘3 ¢ L ¢, (,Léﬁa

The other hand, span {u } is the line with implicit equation y =-x.

span{a] 1= o stqeRy ={ [} . teR]

Mh“\‘—( I\'N\'V\3$fmr\ , w e :\?our\

AR wu&vkcla \1

@m : The mathematical meaning of the word span is related to the English meaning - as in "wing 4
sp ™ or "span of a bridge", but it's also different. The span of a collection of vectors goes on and on and

. in R3,span{_i,_j,k}=[R3

does not "stop" at the vector or associated endpoint.



What we may have realized in the previous exercise is the very important:

Fundamental Fact A vector equation (linear combination problem)

x4 +x,a,+..+x a=>b in R

is equivalent to a system of iinear equations for the unknown weights x,, x,, .... x ; in fact the system of

™

linear equations has augfented matrix given by

[Ql a ..a b]

=2 “n =
(where we have expressed the augmented matrix in terms of its columns). In particular, b can be generated
by a linear compination of @, &, ... a4 if and only if there exists a solution to the linear system
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Exercise 3a) Does the vector equation lw\w/\s =
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3¢) Use an augmented matrix calculation to find what condition needs to hold on vectors b so that

1 -1
. (") How does this computation relate to the (implicit) way we've been
1 U

bespani| 0 || 2
2 0

expressing planes in R3?
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In case we want to sketch anything related to Exercise 3:




Tues Aug 28
+ 1.4 the matrix equation 4 x =b. How the reduced row echelon form of (just) 4 relates to

solvability questions (leads into section 1.5).
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Recall

Fundamental Fact A vector equation (linear combination problem)

X, 4 +x2%+...+xngn=g

is actually a system of linear equations for the unknown weights x,, x,, .... x ; in fact the system of linear

equations has augmented matrix given by
[41 a ..a b ]

=2 “n =
(where we have expressed the augmented matrix in terms of its columns). In particular, b can be generated
by a linear combination of @, &, ... a4 if and only if there exists a solution to the linear system

corresponding to the augmented matrix above.

We should check this carefully today, assuming we didn't do so on Monday:

Definition (from 1.4) If 4 is an m X n matrix, with columns g ..a (inR")andifx € R", then

a
1 b —25
A x is defined to be the linear combination of the columns, with weights given by the corresponding entries

of x. In other words,

! gz—l— X a

(This will give us a way to abbreviate vector equations, for example.)

Ax = x gl—l-xz



Definition. Let u, ¥ be vectors in R”. Then the dot product u + y is defined by

u I
lozszIujvjzulvl+u2v2+...unvn. [“f’} .{(3 = 13 .\.Ll-(-|) '\~("L)-Q
L T3-q-l2 ==y

Computational Theorem: (This is usually a quicker way to compute 4 x. Let If 4 be an m X n matrix,
withrows R, R,, ... R . Then 4 x may also be computed using the rows of 4 and the dot product:

&LQ o@ [ RI.L ]
Rz-g 30 "DDL— A+'
x1£1+x2g2—|— 'I’LL“F'ACJT"
R -x ue chn U]*V\S = liwta~

Exercise 1a) Compute both ways:

1 -23
-2 3 4

K + 70 B % O 2 R

= o [vrrtalev ) (9
() +3(~2) * 41 -~

Exercise 1b) Write as a matrix times a vector:

-2 2 -1 2 T - )([3
3 1 [+4 3 [4+2] 2 | = | 5 2 4
0 1 2 o - 2|2



Exercise 2) Rewrite the following vector equations from yesterday and last week as matrix equations.
Also write down the augmented matrix for these systems.

2a)
1 1 B -2
X, 1 +x, 3 |” 2 | | =
{\ | :]x;\: 4 RN
-l
3 XL %
2b)
1 -1 2
x| 0 |+x]| 2 |=] -3



What the solvability and number of solutions to a matrix equation 4 x = b has to do with the reduced row
echelon form of 4 (i.e. of the unaugmented matrix). Let's explore.

Exercise 3 Find all solutions to the system of 3 linear equations in 5 unknowns
(Slm.'r ‘ve c,(&SS.- .

Hos s rem'cw'o‘F x1—2x2—|-3x3—|-2x4—|—x5=10
ola 0 rtHon *F‘DV‘ 2x1—4x2+8x3—|-3x4—|—10x5=7
rref.) 3x1—6x2+10x3+6x4—|—5x5=27.

Here's the augmented matrix:

1 -2 32 1|10
2 -4 83 10| 7

3 -6 10 6 5|27

Find the reduced row echelon form of this augmented matrix and then backsolve to explicitly parameterize
the solution set. (Hint: it's a two-dimensional plane in [R3, if that helps. :-))






Maple says:
;> with(LinearAlgebra) : # matrix and linear algebra library
> A= Matrix(3, 5, [1,-2, 3, 2, 1,
2,-4, 8, 3, 10,
3,-6, 10, 6, 5]):
b = Vector([10, 7, 27]) :

# a vertical line between the end of A and the start of b
ReducedRowEchelonForm({A|b));

1 -2 32 110
2 -4 8310 7
3 -6 10 6 5 27
1 200 3 5
0 010 2 -3
0 001 -4 7

=> LinearSolve(A, b);

# Maple's way of writing free parameters, which actually makes

# the same way too.

[ s5+2 ¢ -3 ¢ |
-2 -5

t

)
-3—2 ¢
-5
7T4+4 ¢
-5

t
-5

(4|b);  # the mathematical augmented matrix doesn't actually have

# this command will actually write down the general solution, using

# some sense. Generally when there are free parameters involved,

# there will be equivalent ways to express the solution that may

# look different. But usually Maple's version will look like yours,

# because it's using the same algorithm and choosing the free parameters

@

(0))
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Exercise 4 We are interested in the matrix equation 4 x = b for the matrix 4 below, and thitee different Sbl )S g

right hand sides at once.
VIAS na Ay Ky 4 ’f"\ LTS
27 -10 -19 13 10 2 13 54 Honng
A=13 -4 -8 6 rref(A)=|0 1 -2 -3 1
10 2 13 00 0 00

Let's consider three different linear systems for which A is the coefficient matrix. In the first one, the right
hand sides are all zero (what we call the "homogeneous" problem), and I have carefully picked the other
two right hand sides. The three right hand sides are separated by the dividing line below:

27 -10 -19 130 7 7 10 2 13/0/0/0
C=|13 -4 -8 6(00 3 rref(C)=10 1 -2 -3 1/0/0/1
10 2 1 3({000 00 0 O0O0|0f1]0

4a) Find the solution sets for each of th,gthree ystems;using the reduced row echelon form of C.

svx>.’so g:z) b~ |7 595 1
-Y?"‘[O} 0 5 X h 2% R X 43T O

0 o |

*9%1 sv]sjr?_ G Tl T X 20
Xy = ~2{3 ViH "'-SJ:S ‘(v:\:ﬁv;ﬁ({t:; Xy T ’*'L‘l‘,m,’*'tq'@{s |
Xp = 2ty #3415 24 4y i X, = | +2b, 43¢, &

A x”:tbeg Oy + 0%k . ¢ Ox ™| XSe{iéﬁl

(, xq=tae R LT $ ty=t, 6K

C XS*: {-,Sé[R (Fred) (S: {'56&(




27 -10 -19 13|0(7 7 1o 2 13[oloo
Ci=[13 -4 -8 6[0[03 rref(C)=|0 1 -2 -3 1{0[0 1
10 2 1 3[/0[00 00 0 00010

Important conceptual questions:
4b) Which of these three solutions on the previous page could you have written down just from the

reduced row echelon form of A, i.e. without using the augmented matrix and the reduced row echelon
form of the augmented matrix? Why?

bt caunse "*g: ‘E’T‘O Hoan ’H«A'{‘ (&uﬁML‘A) weuqu\
5%% 5 whan wt do 2l vow 0[25

)
—
AX =0
4c) Linear systems in which right hand side vectors equal zero are called homogeneous linear systems.
Otherwise they are called inhomogeneous or nonhomogeneous. Notice that the general solution to the
consistent inhomogeneous system is the sum of a particular solution to it, together with the general
solution to the homogeneous system!!! This is a theorem. Can you see why it's true?

\alon

—_—

4d) In general, can you teMy free paramolutions to a matrix system 4 x = b will have,
tased on the reduced row echelon form of 4 algne (assuming the system is consistent, i.e. has at least one

S

solution)? State what's true and explain why!

¥ ‘Fr‘a tav\«w\g — X Q) vvﬁk'-'r{\rv‘l‘ “’Q’5
— w rref (A)
| W&L(JS



Wed Aug 29

continued.

1.5 solution sets to matrix equations; homogeneous and nonhomogeneous systems of equations,

‘ .
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Definition: A system of linear equations is homogeneous if it can be written in the form
Ax=0
where A is an m X n matrix, and @ is the zero vector in R .

Definition: A system of linear equations is nonhomogeneous (or inhomogeneous) if it can be written in
the form

Ax=b
where A is an m X n matrix, and b is non-zero, i.e. not the zero vector in R .

Our goal in section 1.5 is to understand the relationship between the solution sets of homogeneous and
nonhomogeneous systems, when the matrix 4 is the same. And more generally, how the reduced row
echeleon form of 4 is related to the various possibilities.
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Exercise 1 Consider the matrix 4 below, and answer all questions (including explanations).

27 -10 -19 13 |0 b 10 2 13]0 ¢,

A= 1s 4 5 6 ol,z""ef(A)= 01 -2-31[0¢,

Xy Xy Ky Ky X NE 7
1a) Is the homogeneous problem 4x=0 filways)solvable? Can o wri fo dane e Soluti;s .

(vron)
1b) Is the inhomogeneous problem Ax=b solvable no matter the choice of 5? How are the solutions to the
nonhomogeneous problems related to those of the homogeneous one?

\/QS. EAoL oy a‘F —H,q (Vedqu.l) LAC% w\a{p;x has a Flu‘p"l'
Tws allows tg 4o baeksdd &*C\‘v\o( <ol on

1c) How many solutions are there? How many free parameters are there in the solition? How does this
number relate to the reduced row echelon form of 4?

J . -~ o
| &) X=3 i a solukn_to A%X=0, v mmaHor whad A s (Ao=o)
n Mg cage | \mthre»Q

W) ==ty - Xy~ [6) solhns alwash Hnt sane
Xy = TYek Xq = cluj—2x3'«—3x\1 Xg
- L =
Xy 1
X = frue
Xg = frew
)‘l <
72 -, CZ wao
Xy, o) sueﬁ_s
X\, 0
XS L_0

\o) OQ‘\A V\I\O\hj LrUM, -'Hi'FTu. pan s =¥ W-—‘,;w'\' luimns

n it f«\'u'lml’ maban
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Exercise 2) Now consider the matrix B and similar questions: % ' 5X2 h'"‘lm x

1 2 bl 10 C\
B=|-13 b, rref(B)= | 0 1 | O Cq
4 2 by 00 Cq

. - _ 2 %y ~(0
2a) How many solutions to the homogeneous problem Bx = 0? X =0 [x ] [ ]

2b) Is the inhomogeneous problem Bx = b solvable for every right side vector b?
N ol sl \’E %0,
2¢) When the inhomogeneous problem is solvatfle, how many solutions does it have?
O M b . Xy =
X256



Exercise 3) Square matrices (i.e number of rows equals number of columns) with 1's down the diagonal
which runs from the upper left to lower right corner are special. They are called identity matrices.,

I (because I x = x is always true (as long as the vector x is the right size)).

C s 4%4

1 0 -1 1]o [ 1

2 -1 3 5|0 0
157 4 6 2|0 (O
3 5 7130 0

3a) How many solutions to the homogeneous problem Cx =0 ?
ONE X< Q3
3b) Is the inhomogeneous problem Cx = b solvable for every choice of h?
YES eadn vow reef ()
3c) How many solutions? s & ?\'

ONE

000 ]
100
010

(@)

o
O

001

)

why v K caltd

sy

s ) Ma-‘k‘l\..'x(?-
| 00 6\[%
01 0p Xz
0ot o |[|%
| 0 (o] 0
= X) 0 +X2 | +xs D ">( J
0 ) $ 0
0] 0 I
-—
J
X2 ITx =X

X3

%y



Exercise 4: What are your general conclusions?
4a) What conditions on the reduced row echelon form of the matrlx A guarantee that the homogeneous
equation Ax = 0 has infinitely many solutions? & {8 wage Vo A.lo((

M W’“Tlm brewm.hs ’FV\ A

4b) What condition on the reduced row echelon form of A guarantees that the nonhomogeneous equation
Ax = b always has at least one solution (i.e. is consistent), no matter what the entries of b are?

rref (A) has no 2w oS, (e, aveia rour hasa w—,,.\_.
4c) What conditions on the numbers of rows and columns of 4-always force infinitely many solutions to

?
the homogeneousgrgb_(l_)em. \—Q e colummng e v e Mo H i) be Mx?iw‘} wguw.»,
4d) What conditions on the numbers of rows and columns of 4 guarantee that there will be lots of vectors
b for which Ax = b is inconsistent? \{: vwove rows thon ol unans
Huw  vref(A) Wa¢ oo vowS

4e) What conditions on the reduced row echelon form of 4 guarantee that solutions x to Ax = b are always
unique (if they exist)? Q‘W“j Aomn & a ?um“ w{ei’\:h (o free u'wwa‘,(-y

4f) If A is a square matrix (m=n), what can you say about the solution set to Ax = b when
% The reduced row echelon form of A is the identity matrix? —# £ ¥ac tly e s D\U\‘L )

% The reduced row echelon form of A is not the identity matrix?
~26ns LQ—SS ‘*‘L\am n C ""‘> Y\ o B

= ot o oo o b
%« wL\Mvav&\ Ezﬁ ago ‘g "““j 5"“‘%5
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Section 1.1-1.5 textbook Theorems:

Theorem 1 (p. 13 Uniqueness of reduced (row) echelon form) Each matrix is row equivalent to one and
only one reduced row echelon form matrix.

Theorem 2 (p. 21 Existence and Uniqueness Theorem) A linear system is consistent if and only if the
rightmost column of the augmented matrix is not a pivot column. In other words, no echelon form of the
augmented matrix has a row which is all zeroes, except for a non-zero final entry. If the system is
consistent then the solution is unique if and only if there are no free variables. (And, the number of free
variables equals the number of non-pivot columns in the coefficient matrix.)

Theorem 3 (p. 36 Equivalent formulations for linear systems of equations). Let 4 be an m x n matrix,
with columns 4,4, .4 and let b be in R™. Then the matrix equation
(1) Ax=b
is equivalent to the vector equation
(2) x4, —I—ngz + ...anHZL
as well as to the linear system of m equations in » unknowns which has augmented matrix with columns

(3) [QI,QQ,...Q}? Q],
In particular, the solution sets for (1), (2), (3) are all the same.



Theorem 4 (p. 37) Let 4 be an m x n matrix. Then the following statements are logically equivalent.
That is, for a particular A, either they are all true statements or they are all false:

a) For each b in R™, the equation 4 x = b has a solution.
b) Each b in R is a linear combination of the columns of A.
c) The columns of 4 span R™.

d) A has a pivot position in each row.

Theorem 5 (p. 39 Matrix multiplication is linear) If 4 is an m X n matrix, u, ¥ € R”, c a scalar, then
a) Aw+y)=Au + Ay

b) A(cu)=cAu

Theorem 6 (p. 47 how the solutions to homogeneous and nonhomogeneous problems are related)
Suppose the equation 4 x = b is consistent for some given b, and let p be a solution. Then the solution set

of A x = b is the set of all vectors of the formw=p + v, where v, is any solution of the homogeneous

equation 4 x = 0.



Fri SgpA Aur\g‘]’ 21

« 1.6 some applications

Announcements: 24 1 1) s posled }[_AN\/AS_
¢ Hwl ss, Qi 2 sr(; dso
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1.6 Some applications of matrix equations.
Exercise 1) Balance the following chemical reaction equation, for the burning of propane:

X, C3H8 + X, O2 — X CO2 + X, HZO

R E o i (o

w | gl YRl =gt %y |2

* 0 L 2 A
| )

3 0

X, % t+ Xy 0 - 3 0 - 1|2 ~ o

0 1 \ 0

30 - 0 |0
€ 0O 0 2 |0
> 2 X ~|l|o

X.C’,Hsg b O?_——> ngOz + X, H,,O

Hint: after you set up the problem, the following reduced row echelon form computation will be helpful:

100—%0
30 -1 0|0
80 0 -2/0 — 010—%0
02 -2 -1/0 3
001—20
L
¢
Xp = 471 Wt x,=y
25 1
Xqg = 97
)(\1‘:4(“ X\:'-
Xy 24
— X-,)'-'-(S
v o
‘Cng 50.9

3C0,+*4YH,0




Exercise 2) Consider the following traffic flow problem (from our text): What are the possible flow
patterns, based on the given information and that the streets are one-way, so none of the flow numbers can
be negative?

EXAMPLE 2 The network in Figure 2 shows the traffic flow (in vehicles per hour)
over several one-way streets in downtown Baltimore during a typical early afternoon.
Determine the general flow pattern for the network.

X3 100
Calvert St. T South St.Y T
N
Lombard St. |B C
300 <€ < < 400
Xy
Xy A X5y
Pratt St. |A D
300 > : » 600
X Inner Harbor
A
500

FIGURE 2 Baltimore streets.

Hint: If you set up the flow equations for intersections 4, B, C, D in that order, the following reduced row
echelon form computation may be helpful:

11 00 0 800 | (1000 11600 ]
01 -110 300 0100 -11200
00 01150]| (0010 o0loo
10 00 1 600 00011‘J|500



