Math 2270-002 Week 13 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes cover material in 6.4-6.6
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« 6.4 Gram Schmidt and 4 = QR decomposition. Orthogonal matrices
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r-We begin on Monday with a continuation of the discussion of Gram-Schmidt orthogonalization from 6.4.
Keeping track of the G.S. process carefully yields the 4 = QR matrix product decomposition theorem,
where Q is an "orthogonal matrix" consisting of an orthonormal basis for the span of the columns of 4 and
R is an upper triangular matrix with positive entries along the diagonal. This decomposition is one way to
understand why matrix determinants correspond to = Volumes, in R”, and can also be useful in solving
Blultiple linear systems of equations with the same "A" matrix more efficiently.

Section 6.5, Least square solutions is about finding approximate solutions to inconsistent matrix
equations, and relies on many of the ideas we've been studying in Chapter 6 up to this point. Whenever
one tries to fit experimental data to finite dimensional models it is extremely unlikely that one will get an
exact fit. Least squares solutions are the "best possible", and for this reason software like Matlab
automatically returns the least squares "solution" when aske to solve an inconsistent system.

Section 6.6, Applications to linear models, is an application of the least squares method to e.g. single or
multivariate linear regression in statistics.



Recall the Gram-Schmidt process from Friday:

Start with a basis B = {&1, w,, ... mp} for a subspace W of R”. How can you convert it into an
orthonormal basis? Here's how! The inductive process is called Gram-Schmidt orthogonalization.

Let W1 = span { w, } Define u L= . Then { u, } 1S an orthonormal basis for Wl.
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Let W3 = span {yl,&z,m3 }

Let z, = w, —projW w,, soz, LW,

Define u, = H ” . Then { Uy, Uy } is an orthonormal basis for W3.
3
WS
Inductively,
Let W] = Sp‘m{&p&z’ %} = Span{ll,lz, LU 1,%}
Letz, =w, pmej_lﬁj A G L € o L LRy L
Define u = ”2 H . Then {gl,%, %} is an orthonormal basis for WJ .
J

Continue up to j = p.



et -/ -

Exercise 1 Perform Gram-Schmidt on the R3 bq{iSW| / " / ""1,
1 0 1
B = 1 5 4 5 -2
0 0 3

This will proceed as the Friday exercise until the third step, i.e.
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We're denoting the original basis for W by B = { W, Wy, W } Denote the orthonormal ba51s we've

constructed with Gram-Schmidt by O = { Wi, . 1, } . Because O is orthonormal it's easy to express
these two bases in terms of each other. Notice
Wj = span {ml,&z, %} = span {ll’lz’ gj} foreach1 <j < p.

So,

Notice that the coefficients of the last terms in the sums above, namely ( W, %) can be computed as

L
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In matrix form (column by column) we have
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Thus any matrix with linearly independent columns may be written in factored form as above, (
W= Col A),

, -9

nXxp PXP

This factorization contains geometric information and can simplify the computational work needed to solve
matrix equations 4 x = b.



From previous page...

* A =0 R
nxp =nxpipxp

shortcut (or what to do if you forgot the formulas for the entries of R) If you just know Q you can
recover R by multiplying both sides of the * equation on the previous page by the transpose QT of the O
matrix:
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From previous page ...
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Exercise 3) Verify that the 4 = O R factorization in this example may be further factored as
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serving shear, followed by (2) a

+ So, the transformation 7'(x) = 4 x is a ¢composition of (1) an area-pr,

diagonal scaling that increases area by a factor of \/2 -2,/ 2 = 4, followed by a rotation of %, which does

not effect area. Since determinants of products matrices are the products of determinants (we checked this
back when we studied determinants), and area expansion factors of gompositions are also the products of
the area expansion factors, the generalization of this example gives another explanation of why the
determinant of 4 (or its absolute value in general) coincides with th¢ area expansion factor, in the 2 x 2
case. You show in your homework that the only possible O matriges in the 2 x 2 case are rotations as
above, or reflections across lines through the origin. In the latter case, the determinant of Q is -1, and the
determinant of 4 is negative.
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Example from Exercise 1:.
1] 1

1 0 1 \/7 0

B={|11]1]4/|]| -2 O=j| 1 | 1 |0
0 0 3 JZ JZ2 1
i 0 11 0
Exercise 4a Find the 4 = Q R factorization based on the data above, for
1 0 1
A=|1 4 -2
00 3

1 1
\/T \/T 0
i = 1 1
solution A . . 2\/7 @
0 3

0 1 0 0

Exercise 4b Further factor R into a diagonal matrix times a volume-preserving shear and interpret the
transformation 7'(x) = 4 x as a composition of (1) a volume preserving shear, followed by (2) a
coordinate scaling that increases volume by a factor of 12, followed by a rotation about the x, axis in R3,

which preserves volume. The generalization of this example gives another explanation of why the
determinant of A4 (or its absolute value in general) is the volume expansion factor for the transformation
T(x)=A4x.
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preserves dot products and magnitudes, (so also volumes, since cubes generated by perpendicular vectors
will be transformed into equal-volume cubes). In other words, for all x, y € R”,
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d) The only matrix transformations 7 : R” that preserv ot products are orthogonal transformations.
(These transformations are often referred to as isometries.)
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Tues Nov 20
6.5 Least squares solutions, and projection revisited.
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Least squares solutions, section 6.5

In trying to fit experimental data to a linear model you must often find a "solution" to
Ax=b

where no exact solution actually exists. Mathematically speaking, the issue is that b is not in the range of
the transformation

T(x)=4x,
Le.
X & Range T = Col A.

In such a case, the least squares solution(s) x solve(s)

Ax =projo,; 40
Thus, for the least squares solution(s), 4 x is as close to b as possible. Note that there will be a unique
least squares solution x if and only if Nu/ 4= {0}, i.e. if and only if the columns of 4 are linearly
independent, i.e. all columns are pivot columns.
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Exercise 1 Find the least squares solution to/ /
L2 3 [ 2|9 A
1 O | |3 — ) »w
X, o oo |®o
10 3

Note that an implicit equation of the plane spanned by the two columns of 4 is
-y, T2y, +y,=0. ; CAA has ;wlel e‘l‘t“

Since [3 3 3] does not satisfy the implicit equation, there is no exact solution to this problem. | <34 L3 ?g D

Y ou may use the Gram-Schmidt ortho-normal basis for Col 4, namely
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There's actually a smart way to find the least squares solutions that doesn't require an orthonormal basis for
Col A. To understand it fully depends on concepts we talked about last week (and was one reason we
spent a long time talking about orthogonal complements to subspaces). As a further result, it will turn out
that one can compute projections onto a subspace with elementary matrix operations and without first
constructing an orthonormal basis for the subspace !!! Consider the following chain of equivalent
conditions on X:

Ax=projc, , &

2=b-Ax € (ColA)* =NuiA"

A" (b-4x)=0
ATh - ATax=0
ATax=4"h

This last equation will always be consistent because projections exist. And if the columns of 4 are linearly
independent the solutions to the top equation, and hence the final equation, will be unique. So the matrix

A" 4 will be invertible in that case. The final matrix equation is called the normal equation for least
squares solutions.

Exercise 2 Re-do Exercise 1 using the normal equation, i.e find the least squares solution x to

12 3
X

01 - |3
X,

10|l 2 3

And then note that 4 x is proj o1 A2 1-€. you found the projection of [3 3 3 ]T without ever finding and

using an ortho-normal basis!!!



Matlab assumes you want the least squares solution when you hand it an inconsistent system. This is
because, as we'll discuss tomorrow, whenever an applied mathematician, engineer or scientist is using a
finite-dimensional linear model for an actual experimental process, there is almost no chance that the actual
data will fit the model exactly.

SCI‘lptI
% matlab assumes you want least squares solutions to inconsistent systems
A=[1 2; 0 1; 1 0]
b=1[3;3;3]
aug=I[A, bl
rref(aug) %system is inconsistent (last column is pivot column)
x=linsolve(A,b) %least squares solution

executes to produce:

A =
1 2
0 1
1 0

b =
3
3
3

aug =
1 2 3
0 1 3
1 0 3

ans =

1 0 0
0 1 0
0 0 1
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Exercise 3 In the case that 4”4 is invertible we may take the normal equation for finding the least squares
solutionto A x = b and find 4 x = proj Col

Akdirectly:
ATax=4"b
-1
x=(4"4) 4A'b

-1
proj,, p=Ax=A4(4"4) A'b.

0 or—‘rtw?{m,\J (5«&,0%

g d ")M’V’ e o{
1 2 3 4
Verify for the third time that for W= span{| 0 |, | 1 |{,proj,| 3 |= | 1 |by "plugand chug".
1 0 3 2
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« 6.6 Fitting data to "linear" models.
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Applications of least-squares to data fitting.

+  Find the best line formula y = m x + b to fit n data points { (xl,y1 ), (xz,yz) s eeen s (xn,yn) } We

m
seek b so that
' N o
1 1 )
y2 xz 1

7ZMX+L

(‘(71\’7)

m
In matrix form, find b | SO that

X, 1 Y
X, 1 Y,
| m m
Xy b | =17 A p |~
x 1 y
n n

There is no exact solution unless all the data points are actually on a single line!

Least squares solution:




AT 4

moy T
bl_AM

As long as the columns of 4 are linearly independent (i.e.at least two different values for xj) there is a

unique solution [m, b]T. Furthermore, you are actually solving

m
A
where
W = span
SO
Y
Y
- m
Yy
n

=Dproj, ¥
X
1 1
x2 1
X 1
n

1

is as small as possible. In other words, ybu've minimized the sum of the squared vertical deviations from

points on the line to the data points,

n

i=1

Z (yl. — mx; — b,)z.

Exercise 1 Find the least squares line fit for the 4 data points { (-1, 0), (0, 1), (1,1), (2,0)}. Sketch.
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Example 2 Find the best quadratic fit to the same four data points. This is still a "linear" model!! In other
words, we're looking for the best quadratic function

p(x)=c¢, +clx+czx2
to fit to the four data points
{(-1,\0), (0,L), (L,|1), (2,10) }.

We want to solve

S

1 X % 8el

2
2 =

1 X2 X2 yz Q‘S' c'o+ clx\ +{Lxl }l|
Sl . + ¢, + cy = . )(1 _

: : . : CO-\-C|X2+CLZ~7L

: %, Y, \

For our example this is the system

G
' ' =
A = ©O = & 3
= 2 g—

1| -1
1 0
c01+c1 | +02 =1
1 2 0
L -1 1.1 [0]
1 0 0 1
C, = .
1 1 1 Y 1
1 2 4| S 0

with Matlab and the least squares normal equation (which matlab will apply automatically as well), we can
let technology solve

ATde=4a"p

although this problem is small enough that one could also work it by hand.



This Matlab script

%in the following example the least square solution is

%actually an exact solution.

c=[1,-1,1; 1,0,0; 1,1,1; 1,2,4]

b2=[0;1;1;0]

c=linsolve(C,b2) %least squares solution
c2=(transpose(C)*C)~(-1)*transpose(C)*b2 <%also least squares solution
rref([C,b2]) %system was consistent

yields

C =
1 -1 1
1 o o
1 1 1
1 2 4

b2 =
7]
1
1
o

1.0000 Mak \A[’

0.5000
-0.5000
c2 =
1.0000 mA%& W«¥M$
0.5000
[
-0.5000 'f'“"""“”o'
ans =
1.0000 0 0 | 1.0000
0 1.0000 0 | 0.5000
0 0  1.0000 | -0.5000

0 0 0 0



For a plot, this script:

%splots...

t=1linspace(-1.5,2.5,100) %left endpt, right endpt, numpoints

"t" above is a vector 100 equally spaced numbers between -1.5 and 2.5
the definition below is for an equally sized vector containing the
parabolic approximation. we use "t." to extract a scalar value from the
vector

y=c(1)+c(2)*t+c(3)*t.xt

luckyl=plot(t,y, 'black")

title('best parabolic fit')

xlabel('t') %horizontal variable label

ylabel('y') %vertical variable label

o° o o° o°

hold on % the "hold" command lets us combine plots into one display
scatter([-1,0,1,2],[0,1,1,0], 'red")
hold off

produces this display:

best parabolic fit
15 T T T T

=1.5 =1 -0.5 0 0.5 1 1.5 2 2.5




Math 2270-002
Week 13-14 homework,
due November 28.

6.5 Least square solutions

1,3517911,1517,19

6.6 Linear models for data fitting

1, 7, and exercise w13.2 below about the human height-weight power law.

— ——

6.7 Inner product spaces
6.7.25 extended (Legendre polynomials): For functions in C[ -1, 1 ] Use Gram-Schmidt to find an

orthogonal basis for W = span{ 1,1t tz, £ }, with respect to the inner product

1

(he)=| gl d
-1
In the first part of the problem scale the orthogonal polynomials so that the coefficient of the leading power
of tis 1. Then normalize the orthogonal basis to make it orthonormal. Y ou can read more about Legendre

polynomials at Wikipedia.

-1 1 -1
w13.1 In quiz 13 you found proj,, b, forb=| 3 |and W=spany| -1 |, | 3 |}, by first finding an
-1 2 || -4

orthogonal basis for # and then using that basis to do the projection. Rework this projection problem by
using the method of least squares algorithm from section 6.5, as we've also discussed in class.



Math 2270-002 Fall 2018
A Power Law For Human Heights and Weights

Body Mass Index

A person's BMI is computed by dividing their weight by the square of their height, and then
multiplying by a universal constant. If you measure weight in kilograms, and height in meters, this
constant is the number one. If you measure height in inches and weight in pounds then the formula is

BMI =703
h

The graph of heights and weights for which BMI has a constant value B is the parabola
__B h
T

Thus, the assumption underlying BMI is that for adults at equal risk levels (but different heights), weight
should be proportional to the square of height. This is a historical accident and at some point became a
dogma. The BMI was popularized in the 1960's in the U.S., by proponents who were initially unware that
they were repeating history. Itis easy to deduce that if people were to scale equally in all directions when
they grew, weight would scale as the cube of height. That particular power law seems a little high, since
adults don't look like uniformly expanded versions of babies; we seem to get relatively stretched out
length-wise when we grow taller. One would expect the best predictive power to be somewhere between
2 and 3. If the power is much larger than 2 then one could argue that the body mass index might need to
be modified to reflect this fact.

1t turns out a Belgian demographer, Adolphe Quetelet, also called the "Father of Statistics", originally
proposed a power of p=2 for adults, based on his own data analysis during the early 1800's. In a
footnote which history has forgotten, he said that a power of 2.5 is more appropriate if you want an
approximation for people of all ages. He actually wrote that the square of the weight should scale like the
fifth power of the height, because pre-calculators, fractional powers were harder for people to deal with.
My recollection is that this footnote appears in the 1835 publication "Sur I'homme et le développement de
ses facultés, ou Essai de physique sociale”. I have read the footnote.

There is (or at least there was, 20 years ago) a database at the U.S. Center for Disease Control, of national
body data collected between 1976 and 1980. From this data I have extracted the median heights and
weights for boys and girls, age 2-19. The national data is shown on the next page; heights are given in
inches and weights are in pounds.

w13.2) Find the power law
w=Ch?
predicted by this data, by finding a least squares line fit to the In-In data. (Combine the boy-girl data into
one set.) We will discuss this further in class on Monday after Thanksgiving. Note that if such a power
law holds, taking logarithms of both sides of the identity yields
In(w)=In(C) + p-In(h).
If we write Y = In(w), X=In(%) then this is the equation of a line in the X — Y plane, where the slope is
the original power p and the Y - intercept equals In(C),
Y=Y, +pX



[ age boy height weight girl height weight |
2 35.9 29.8 35.4 28.0
38.9 34.1 38.4 32.6
41.9 38.8 41.1 36.8
44.3 42.8 43.9 41.8
47.2 48.6 46.6 47.0
49.6 54.8 48.9 52.5
51.4 60.8 51.4 60.8
53.6 66.5 53.1 65.5
10 55.7 76.8 55.7 76.1
11 57.3 82.3 58.2 89.0
12 59.8 93.8 61.0 100.1
13 62.8 106.8 62.6 108.1
14 66.0 124.3 63.3 117.1
15 67.3 132.6 64.2 117.6
16 68.4 142.1 64.3 122.6
17 68.9 145.1 64.2 128.8
18 69.6 155.3 64.1 124.5
19 69.6 153.2 64.5 126.0

A graph of the best line fit to the national In — In data. It's a pretty good fit! (Infants are a little heavier
than the line predicts, adolescent data is slightly below the line, and as adults mature they rise a bit above
the line. The slope of the line will be the power in the approximate power law.
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submission: I prefer that you use Matlab. In that case, submit a script to CANVAS which computes the
least squares line fit; which recovers the power law; and which creates a graph of the log-log point
scatterplot together with the least squares line (as above); and a separate plot which combines a scatter plot
of the original height-weight data, together with the graph of the power law function. We will use an
analogous script for a smaller problem in class on Monday. If you don't use Matlab please hand in hard
copies of same results with the rest of your homework.



