
Math 2270-002  Week 13 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  6.4-6.6 

Mon Nov 19
       6.4   Gram Schmidt and A = QR decomposition.  Orthogonal matrices

Announcements: 

Warm-up Exercise:
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We begin on Monday with a continuation of the discussion of Gram-Schmidt orthogonalization from 6.4.  
Keeping track of the G.S. process carefully yields the A = QR matrix product decomposition theorem, 
where Q is an "orthogonal matrix" consisting of an orthonormal basis for the span of the columns of A and
R is an upper triangular matrix with positive entries along the diagonal.  This decomposition is one way to 
understand why matrix determinants correspond to  Volumes, in n, and can also be useful in solving 
multiple linear systems of equations with the same "A" matrix more efficiently.

Section 6.5, Least square solutions is about finding approximate solutions to inconsistent matrix 
equations, and relies on many of the ideas we've been studying in Chapter 6 up to this point.  Whenever 
one tries to fit experimental data to finite dimensional models it is extremely unlikely that one will get an 
exact fit.  Least squares solutions are the "best possible", and for this reason software like Matlab 
automatically returns the least squares "solution" when aske to solve an inconsistent system.

Section 6.6, Applications to linear models, is an application of the least squares method to e.g. single or 
multivariate linear regression in statistics.  
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Recall the Gram-Schmidt process from Friday:

Start with a basis B  = w1, w2, ... wp  for a subspace W of n.   How can you convert it into an 
orthonormal basis?  Here's how!  The inductive process is called Gram-Schmidt orthogonalization.

Let W1 = span w1 .  Define  u1 = 
w1

w1
.  Then u1  is an orthonormal basis for W1.

Let W2 = span w1, w2 = span u1, w2 .

     Let z2 = w2 projW
1
w2 =  w2 w2 u1 u1  so z2 u1.

     Define u2 = 
z2
z2

.   So u1, u2  is an orthonormal basis for W2.



Let W3 = span w1, w2, w3 .

     Let  z3 = w3 projW
2
w3,   so z3  W2.

     Define u3 = 
z3
z3

.  Then u1, u2, u3   is an orthonormal basis for W3.

Inductively,

Let  Wj = span w1, w2, ... wj  = span u1, u2,  ...  uj 1, wj .

     Let zj = wj  projW
j 1

 wj  = wj  wj u1 u1   wj u2 u2    ... wj uj 1 uj 1    .

     Define  uj = 
zj
zj

.   Then u1, u2, ... uj   is an orthonormal basis for Wj .

Continue up to j = p.



Exercise 1  Perform Gram-Schmidt on the 3 basis

B =

1

1

0
,

0

4

0
,
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2

3
.

This will proceed as the Friday exercise until the third step, i.e.

u1 =
1

2

1

1

0
,  u2 =

1

2

1

1

0
  

.
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A = Q R decomposition:   

We're denoting the original basis for W by B  = w1, w2, ... wp .  Denote the orthonormal basis we've 
constructed with Gram-Schmidt by O = u1, u2, ... up  .  Because O is orthonormal it's easy to express 
these two bases in terms of each other.  Notice

Wj = span w1, w2, ... wj  =  span u1, u2, ... uj       for each 1 j p.

So,
w1 = w1 u1 u1 

w2 = w2 u1 u1  w2 u2 u2 
:

wj = wj u1 u1  wj u2 u2  ....   wj uj uj 
:  

wp =
l = 1

p

wl ul ul  .

Notice that the coefficients of the last terms in the sums above, namely wj uj  can be computed as

wj uj = zj
zj
 zj

=  zj .

In matrix form (column by column) we have

Thus any matrix with linearly independent columns may be written in factored form as above, (
W = Col A ,

An p = Qn p Rp p.

This factorization contains geometric information and can simplify the computational work needed to solve
matrix equations A x = b.
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From previous page...
                An p = Qn p Rp p

shortcut  (or what to do if you forgot the formulas for the entries of R)  If you just know Q you can 
recover R by multiplying both sides of the  equation on the previous page by the transpose  QT of the Q 
matrix:

A = Q R
QTA = QTQ R = I R = R.  

Example)   From last Friday, 

B = 
1

1
,  

0

4
,   O = 

1

2

1

2

,  

1

2

1

2

  .

1 0

1 4
 =  

1

2

1

2

1

2

1

2

w1 u1 w2 u1

0 w2 u2
 = 

1

2

1

2

1

2

1

2

2 2 2

0 2 2
 = Q R .

Exercise 2)   Verify that R could have been recovered via the formula 
QT A = R

QT A Q Q R
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From previous page ...

1 0

1 4
 =  

1

2

1

2

1

2

1

2

2 2 2

0 2 2
.

Exercise 3)  Verify that the A = Q R factorization in this example may be further factored as

 
1 0

1 4
= 

1

2

1

2

1

2

1

2

2 0

0 2 2

1 2

0 1
.

   So, the transformation T x  = A x is a composition of (1) an area-preserving shear, followed by (2) a 

diagonal scaling that increases area by a factor of 2 2 2 = 4, followed by a rotation of 
4

, which does

not effect area.  Since determinants of products matrices are the products of determinants (we checked this 
back when we studied determinants), and area expansion factors of compositions are also the products of 
the area expansion factors, the generalization of this example gives another explanation of why the 
determinant of A (or its absolute value in general) coincides with the area expansion factor, in the 2 2 
case.  You show in your homework that the only possible Q matrices in the 2 2 case are rotations as 
above, or reflections across lines through the origin.  In the latter case, the determinant of Q is 1, and the 
determinant of A is negative.
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Example from Exercise 1:.

B =
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Exercise 4a  Find the A = Q R factorization based on the data above, for 

A = 

1 0 1

1 4 2

0 0 3

solution A =

1

2

1

2
0

1

2

1

2
0

0 0 1

2 2 2
1

2

0 2 2
3

2

0 0 3

Exercise 4b  Further factor R into a diagonal matrix times a volume-preserving shear and interpret the 
transformation T x  = A x as a composition of (1) a volume preserving shear, followed by (2) a 
coordinate scaling that increases volume by a factor of 12, followed by a rotation about the x3 axis in 3, 
which preserves volume.  The generalization of this example gives another explanation of why the 
determinant of A (or its absolute value in general) is the volume expansion factor for the transformation 
T x = A x.
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Definition  A square n n matrix Q is called orthogonal if its columns are ortho-normal.  (You can read 
more about orthogonal matrices at e.g. Wikipedia.)

Theorem.  Let Q  be an orthogonal matrix.  Then
a)  Q 1 = QT.   

b)   The rows of Q are also ortho-normal.

c)   the transformation T : n n given by 
T x  = Q x

preserves dot products and magnitudes, (so also volumes, since cubes generated by perpendicular vectors 
will be transformed into equal-volume cubes).  In other words, for all x, y n, 

T x T y  = x  y  

T x = x .

d)  The only matrix transformations T : n n that preserve dot products are orthogonal transformations.
 (These transformations are often referred to as isometries.)

ej is the axisofrotation

protating by My about thisaxisfacet If Qz hasorthonormal
columns it'seither a

know if Q aia aid rotation aboutsome axis
in 1123 or the composition
of a rotation withQQ f III Naia ai a reflection thru

QTQ I plane
fromchapter on inverse T Il Qf

Q QT I QQ I and Q t QT

I friar ay I Ii to
magicofwarm up exercise

orthogonal
QI Qf

thrsukemgeotionety mail.to axyIffIfIaQg5crmfoJ
lxy2

cos I Qf I

HQ Qjp IF Tty I.ggKIMHyun

If TEI AEprutpwducts.lt
thenA AE AE Aei Aei.AE eiE
AeIAej ej.ejlol's of Affethormal Oitj



Tues Nov 20
         6.5 Least squares solutions, and projection revisited.

Announcements: 

Warm-up Exercise:
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Least squares solutions, section 6.5

In trying to fit experimental data to a linear model you must often find a "solution" to
 A x = b 

where no exact solution actually exists.  Mathematically speaking, the issue is that b is not in the range of 
the transformation

T x = A x,
i.e.

x  Range T = Col A.

In such a case, the least squares solution(s) x  solve(s)

 A x  = projCol A  b .

Thus, for the least squares solution(s),  A x  is as close to b as possible.  Note that there will be a unique 
least squares solution x  if and only if Nul A = 0 , i.e. if and only if the columns of A are linearly 
independent, i.e. all columns are pivot columns.

t
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Exercise 1  Find the least squares solution to 
1 2

0 1

1 0

x1

x2
 =  

3

3

3
.

Note that an implicit equation of the plane spanned by the two columns of A is
y1 2 y2 y3 = 0.

Since 3 3 3 T does not satisfy the implicit equation, there is no exact solution to this problem.  

You may use the Gram-Schmidt ortho-normal basis for Col A, namely

O = 
1

2

1
0
1

,  
1

3

1
1
1

.
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There's actually a smart way to find the least squares solutions that doesn't require an orthonormal basis for
Col A.  To understand it fully depends on concepts we talked about last week (and was one reason we 
spent a long time talking about orthogonal complements to subspaces).  As a further result, it will turn out 
that one can compute projections onto a subspace with elementary matrix operations and without first 
constructing an orthonormal basis for the subspace !!!  Consider the following chain of equivalent 
conditions on x:

 A x = projCol A  b 

z = b  A x   Col A = Nul AT

AT b  A x = 0 

AT b  ATA x = 0 

AT A x = AT b .

This last equation will always be consistent because projections exist.  And if the columns of A are linearly
independent the solutions to the top equation, and hence the final equation, will be unique.  So the matrix 
AT A  will be invertible in that case.  The final matrix equation is called the normal equation for least 
squares solutions.

Exercise 2  Re-do Exercise 1 using the normal equation, i.e find the least squares solution x  to
1 2

0 1

1 0

x1

x2
 =  

3

3

3
.

And then note that A x  is projCol Ab, i.e. you found the projection of 3 3 3 T without ever finding and 
using an ortho-normal basis!!!
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Matlab assumes you want the least squares solution when you hand it an inconsistent system.  This is 
because, as we'll discuss tomorrow, whenever an applied mathematician, engineer or scientist is using a 
finite-dimensional linear model for an actual experimental process, there is almost no chance that the actual 
data will fit the model exactly.  

script:

executes to produce:

WEI AI 41 171 11 which is projaeaf as Ieained

I

I
least squares silk



Exercise 3  In the case that ATA is invertible we may take the normal equation for finding the least squares 
solution to A x = b and find A x = projCol Ab directly:

AT A x = AT b

x = ATA
1
AT b

projCol Ab = A x = A ATA
1
ATb.

Verify for the third time that for W = span

1
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1
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0
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Wed Nov 21
         6.6  Fitting data to "linear" models.

Announcements: 

Warm-up Exercise: find the least squaressolutionto
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Applications of least-squares to data fitting.

     Find the best line formula y = m x  b to fit n data points x1, y1 , x2, y2  , .... , xn, yn .  We 

seek 
m
b  so that

y
1

y
2

y
3

:
y
n

 =  m

x
1

x
2

x
3

:
x
n

  b 

1
1
1
:
1

.

In matrix form, find 
m
b  so that

x
1

1

x
2

1

x
3

1

: :
x
n

1

m
b  =  

y
1

y
2

y
3

:
y
n

 .           A 
m
b =  y  .

There is no exact solution unless all the data points are actually on a single line!

Least squares solution:  

AT A 
m
b  =  ATy .
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AT A 
m
b  =  ATy

As long as the columns of A are linearly independent (i.e.at least two different values for xj) there is a 

unique solution m, b T.   Furthermore, you are actually solving 

A 
m

b
 = projW y

where

W = span

x
1

x
2

:
x
n

,  

1
1
:
1

,

so 
y
1

y
2

:
y
n

  m

x
1

x
2

:
x
n

b

1
1
:
1

2

 

is as small as possible.  In other words, you've minimized the sum of the squared vertical deviations from 
points on the line to the data points,

i = 1

n

yi mxi bi
2.

Exercise 1   Find the least squares line fit for the 4 data points 1, 0 , 0, 1 , 1, 1 , 2, 0 .  Sketch.
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Example 2  Find the best quadratic fit to the same four data points.  This is still a "linear" model!!  In other 
words, we're looking for the best quadratic function

p x = c0  c1 x c2 x2 
to fit to the four data points 

1, 0 , 0, 1 , 1, 1 , 2, 0 .

We want to solve

c0

1

1

:

1

  c1

x1

x2

:

xn

c2

x1
2

x2
2

:

xn
2

 =  

y1

y2

:

yn

.

For our example this is the system

c0

1

1

1

1

c1

1

0

1

2

c2

1

0

1

4

=

0

1

1

0

.

1 1 1

1 0 0

1 1 1

1 2 4

c1

c2

c3

=

0

1

1

0

.

with Matlab and the least squares normal equation (which matlab will apply automatically as well), we can 
let technology solve

ATA c = AT b 

although this problem is small enough that one could also work it by hand.
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This Matlab script

yields

Matlab

magicmatrixformula

I



For a plot, this script:

produces this display:



Math 2270-002
Week 13-14 homework, 

 due November 28.

6.5  Least square solutions
1, 3, 5, 7, 9, 11, 15, 17, 19

6.6  Linear models for data fitting
1, 7, and exercise w13.2 below about the human height-weight power law.

6.7 Inner product spaces
6.7.25  extended (Legendre polynomials):  For functions in C 1, 1  Use Gram-Schmidt to find an 
orthogonal basis for W = span 1, t, t2, t3 , with respect to the inner product

f, g =
1

1
f t g t  dt.

In the first part of the problem scale the orthogonal polynomials so that the coefficient of the leading power
of t is 1.  Then normalize the orthogonal basis to make it orthonormal.  You can read more about Legendre 
polynomials at Wikipedia.

w13.1  In quiz 13 you found projW  b,  for b =

1

3

1
 and W = span

1

1

2
,

1

3

4
, by first finding an 

orthogonal basis for W and then using that basis to do the projection.  Rework this projection problem by 
using the method of least squares algorithm from section 6.5, as we've also discussed in class.



Math 2270-002  Fall 2018
A Power Law For Human Heights and Weights

Body Mass Index
     A  person's BMI is computed by dividing their weight by the square of their height, and then 
multiplying by a  universal constant.  If you measure weight in kilograms, and height in meters, this 
constant is the number one. If you measure height in inches and weight in pounds then the formula is

BMI = 703
 w
h2

The graph of heights and weights for which BMI has a constant value B is the parabola

w =
B

703
h2.

 
Thus, the assumption underlying BMI is that for adults at equal risk levels (but different heights), weight 
should be proportional to the square of height.  This is a historical accident and at some point became a 
dogma.  The BMI was popularized in the 1960's in the U.S., by proponents who were initially unware that
they were repeating history.  It is easy to deduce that if people were to scale equally in all directions when 
they grew, weight would scale as the cube of height.   That particular power law seems a little high, since 
adults don't look like uniformly expanded versions of babies; we seem to get relatively stretched out 
length-wise when we grow taller.  One would expect the best predictive power to be somewhere between 
2 and 3.  If the power is much larger than 2 then one could argue that the body mass index might need to 
be modified to reflect this fact. 

It turns out a Belgian demographer, Adolphe Quetelet, also called the "Father of Statistics", originally 
proposed a power of p=2 for adults, based on his own data analysis during the early 1800's.  In a 
footnote which history has forgotten, he said that a power of 2.5 is more appropriate if you want an 
approximation for people of all ages. He actually wrote that the square of the weight should scale like the 
fifth power of the height, because pre-calculators, fractional powers were harder for people to deal with.  
My recollection is that this footnote appears in the 1835 publication "Sur l'homme et le développement de 
ses facultés, ou Essai de physique sociale".  I have read the footnote.

There is (or at least there was, 20 years ago) a database at the U.S. Center for Disease Control, of national 
body data collected between 1976 and 1980.  From this data I have extracted the median heights and 
weights for boys and girls, age 2-19.  The national data is shown on the next page; heights are given in 
inches and weights are in pounds.

w13.2)  Find the power law 
w = C h p

predicted by this data, by finding a least squares line fit to the ln-ln data.  (Combine the boy-girl data into 
one set.)  We will discuss this further in class on Monday after Thanksgiving.  Note that if such a power 
law holds, taking logarithms of both sides of the identity yields

ln w = ln C p ln h .
If we write Y = ln w , X = ln h  then this is the equation of a line in the X Y plane, where the slope is 
the original power p and the Y intercept equals ln C ,

Y = Y0  p X



 
age boy height weight girl height weight
2 35.9 29.8 35.4 28.0
3 38.9 34.1 38.4 32.6
4 41.9 38.8 41.1 36.8
5 44.3 42.8 43.9 41.8
6 47.2 48.6 46.6 47.0
7 49.6 54.8 48.9 52.5
8 51.4 60.8 51.4 60.8
9 53.6 66.5 53.1 65.5
10 55.7 76.8 55.7 76.1
11 57.3 82.3 58.2 89.0
12 59.8 93.8 61.0 100.1
13 62.8 106.8 62.6 108.1
14 66.0 124.3 63.3 117.1
15 67.3 132.6 64.2 117.6
16 68.4 142.1 64.3 122.6
17 68.9 145.1 64.2 128.8
18 69.6 155.3 64.1 124.5
19 69.6 153.2 64.5 126.0

A graph of the best line fit to the national ln ln data.  It's a pretty good fit!  (Infants are a little heavier 
than the line predicts, adolescent data is slightly below the line, and as adults mature they rise a bit above 
the line.  The slope of the line will be the power in the approximate power law.

x
3.2 3.4 3.6 3.8 4.0 4.2 4.4

2.5
3

3.5
4

4.5
5

5.5
national ln(ht)-ln(wt) data

submission:  I prefer that you use Matlab.  In that case, submit a script to CANVAS which computes the 
least squares line fit; which recovers the power law; and which creates a graph of the log-log point 
scatterplot together with the least squares line (as above); and a separate plot which combines a scatter plot 
of the original height-weight data, together with the graph of the power law function.  We will use an 
analogous script for a smaller problem in class on Monday.  If you don't use Matlab please hand in hard 
copies of same results with the rest of your homework.


