Math 2270-002 Week 12 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes cover material in 6.1-6.4

Chapter 6 is about orthogonality and related topics. We'll spend maybe two weeks plus a day in this
chapter. The ideas we develop start with the dot product, which we've been using algebraically to compute
individual entries in matrix products, but which has important geometric meaning. By the end of the
Chapter we will see applications to statistics, discuss generalizations of the dot product, "inner products",
which can apply to function vector spaces and which lie at the heart of physics applications that use
Fourier series, and more recent applications such as image and audio compression, see €.g.
https://en.wikipedia.org/wiki/Discrete _cosine transform
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6.1-6.2 dot product, length, orthogonality, projection onto the span of a single vector, and angles -
in R".
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Recall, for any two vectors vy, w € R” , the dot product v « w is the scalar computed by the definition
n

o Do
i=1
We don't care if ¥, w are row vectors or column vectors, or one o

ach, for the dot product.
We've been using the dot product algebraically to compute entries of \gatrix products 4 B, since
entry, [AB]= [rowl.A] [colj B] = [rowl.A] [coljB] .

The algebra for dot products is a mostly a special case of what we alreglly know for matrices, but worth
writing down and double-checking, so we're ready to use it in the rest of Chapters 6 and 7.

Exercise 1 Check why

la) dot product is commutative:

n
1b) dot product distributes over addition:
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Chapter 6 is about topics related to the geometry of the dot product. It begins now, with definitions and
consequences that generalize what you learned for R2, R3 in your multivariable Calculus class, to R” .

2) Geometry of the dot product, stage 1. We'll add examples with pictures as we go throught these
definitions.

2a) Fory € R" we define the length or norm or magnitude of y by |
n L z = /x4 +94 16
T TR e
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Notice that the length of a scalar multiple of a vector is what you'd expect:
1
7 2
el = (o) ® = (o)™ =1l

AdsoTrStice that 21— oromess =0, " {_5] |\ _ "5[,5,]": SVl

25

2b) The distance between points (with position vectors) P, Q is defined to be the magnitude of the
displacement vector(s) between them, ||Q — P|| (or |[|P — @]|).
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2¢) For v, w € R”, we define v to be orthogonal (or perpendicular) to w if and only if
vew=0.

And in this case we write vy | w.

vew= |z || cos(6)

v
where 0 is the angle between v, w. (Because cos(0) = 0 when 6 = % ) That identity followed from the

law of cosines, although you probably don't recall the details. Today we'll use the identity above to define
angles between vectors, in [R”, and show that it makes sense. (Next week, in section 6.6 we'll see that what

we call "cos (0)" in Math 2270 is known as the "correlation coefficient" in linear regression problems in
statistics. In about two weeks, we will use the same identity to define angles between functions and
perpendicular functions, in inner product function spaces, sections 6.8-6.9.)
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2d) The R” reason for defining orthogonality as in 2¢ is that the Pythagorean Theorem holds for the
triangle with displacement vectors y, w and hypotenuse vy + w if and only if y e w = 0. Check!
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([Fral = (R+w) (T «w)
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2e) A vector u € R” is called a unit vector if and only if ||u|| = 1. 2 o Mh* e e

3 2
K =53 = L

2f) If y € R” then the unit vector in the direction of v is given by = | s@ 5 = “/
w= 1y ‘ 077
el T sn@
vn =
l‘v“ \ llvl\ '1 LA\M)( \,4,_{-\7\_ i v
using Scallan el |-

2g) Projection onto a line. Lety € R” be a non-zero ctor let L = span {v} be a line through the origin.
Then for any x € R” the projection of x onto L is defined by the formula

| . [
proj, X = (x-u)u = (X-¥ )y_
. . o . v e
for u the unit vector in the direction of v, u = T v. Equivalently
: (x-»)
proj, X = L.
2l

Then the vector
Zz=x—(x*u)u

is perpendicular to every vector in span{y} = span{u}. Thus every triangle containing (the point with
position vector) x, (the point with position vector) proj, x, and another point (with position vector) w on

the line L is a Pythagorean triangle. Consequently, proj,x is the (position vector of) nearest point on L to

(the point with position vector) x .
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2h) Refer to the same diagram as in 2g, which is an R” picture. Using the Pythagorean triangle with
edges (x*u)u, z, x we have

w2 +lzp=llxp, e o froe 2 L C,z.,;;);’
£o
(o) +zl*=llxp &

The quantity x * u is called the component of x in the direction of u, and from the formula above,

Axl<xem< el (exbvene casts o whn (7 |0

€. X ¢ A\reao\b o~ Hu lllb\e

Define the angle 6 between y and w the same way we would in [R2, using the congruent triangle in the
figure below, namely

Notice that -1 < cos(0) < 1 and so there is a unique 8 with 0 < 6 < 7 for which the cos 8 equation
can hold. Substituting u = L

L2 gives the familiar formulas that you learned in multivariable Calculus for
k2, R3, which now holds in IR;.
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3) Summary exercise

2 3

]. Find proj, 4

b) Verify the Pythagorean Theorem for some triple of points where two of them are (3, 4), the point with

3 i

a) In R?, let L = span . lustrate.

position vector proj,

4l and the third one is any other point on L = span
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Tues Nov 13
+ 6.2-6.3 Orthogonal complements, and the four fundamental subspaces of a matrix revisited.
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Orthogonal complements, and the four subspaces associated with a matrix transformation, revisited more
carefully than our first time through.

Let W = R” be a subspace of dimension 1 < p < n. The orthogonal complement to W is the collection
of all vectors perpendicular to every vector in . We write the orthogonal complement to # as W + , and
say "W perp". Let B = {&1,%, mp} be a basis for . Lety € W + . This means

<cw

" +czm2+...+cpw )-EZO

P

for all linear combinations of the spanning vectors. Since the dot product distributes over linear
combinations, the identity above expands as

cl(m1 -z) +cz(m2 -2) + .. +cp(mp -2) =0
for all possible weights. This is always true as soon as we check the special cases

In other words, ¥ € Nul A where A4 is the m X n matrix having the spanning vectors as rows:

T 1.
u, v,
Ay= wo | -0
WT vn
w,
So
WL =NulA.
1 1 3 N
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Theorem: Let A be any m x n matrix. Then (Row A) + = Nul A.
L
&S XL eack ron g A ( bteanse RowA = Sf&hfb VoS 'bA>

= A3

Theorem. Conversely, let 4 be an m x n matrix. Then (Nul A) - = Row A.
(l+ ranle A=y =% \>“w\'$ = dow Ror A (&AAW\(/T{A)
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Corollary Let W S R” be a subspace. Then (W )+ = W.z A
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Exercise 2 For W= span| as in Exercise 1, verify that (W 1) = = w.

Wl - s‘mv\{ -,25}‘
(W) = Nt (2 -3 )

—

diva = 2 <'2 WG\N-\’\'W“' ures)

el et

beds

(2 -5 1) 11 = N
o] b W



Theorem (fill in details).

la) Let W S R” be a subspace with dim W=r, 1 <r < n. Thendim(W + ) =n—r,so
dim(W) + dim(W+)=n
Hint: Use reduced row echelon form 1deas.

Lt §3.%, . 7,] kea baws fo W,

Than w,
Wt = N l o
g
-
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. 1 = dAna ek Space
Hint: Letx € W N W . Compute x * X. oty hag n o lowng
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lc) Let B = {ml,mz, %!’} be a basis for W and C= {11"7'2’ -l _?_} be a basis for W +. Then
their union, B U C, is a basis for R”.

Hint: Show B U C is linearly independent.

D
~ R —J a) 9 - _
R S LS A3 v v -+ °\h_v%h_“,- @) o
() ~ 2 ) o) - s
‘\QW"‘.\{ o 0 = C|Lu‘+~- «-crwr - ~A|%‘—AL‘&» — - —o\h_' 2“_( e O
= _ -~ < ) — .
B =08, to e vey D e
(:\I\/ é \[\/ Cina lan
PN A L= 0y
\ v ‘/\—v:

1d) Every x € R” can we written as x =w + z with unique choices of w € Wandz € W L
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Remark: From the discussion above and our previous knowledge, we see that for any m X n matrix A4,
(Row A) + =Nul 4; (Nul A) + = Row A; dim (Row A) = r, dim (Nul A) = n — r, where r is the rank
of the matrix. Furthermore from 1d on the previous page, each x € R” can we written uniquely as
x=w + z with w € Row 4 and € Nul A. So for the linear transformation

T(x)=Ax

we have
T(x)=Ax=Aw +z)=Aw + Az=4Aw.)

By the same reasoning applied to the transpose transformation from R”— [R”, the codomain of 7
decomposes into Col A= Row A" and (Col A) + = Nul A", with dim (Col A) = r and

dim (Nul AT) =m — r. In other words, we have justified the diagram we really only waved our hands at
back in Chapter 4:

C(A")f RorCA] C(A)
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Wed Apr 4
6.2-6.3 very good bases revisited: orthogonal and orthonormal bases. Projection onto multi-

dimensional subspaces.

Announcements:  Hw : .2 | @
R %Q@)@@ 3, @)

o fo Lot

1&""5"‘ W W dASLhSSnd\,'fVWv- 74_5}4«’(&(5 )
eadk X6 R s expressed unquely  Ag X=W+2Z
¢ S"'ar{‘ +044y5 e ke \z:oé\l\)\
Warm-up Exercise: Ld- L = S[Dom. i’:’zg]} 2¢\W—
a) E?ﬂ'lwesg X = [l as X =W 2 wi Wl
¢ ze Ll

BY 1 lustrale .
X \ ’L

OL)‘ W = ‘WO‘A

nwZa

\7\ % -E"O 2+ (3- froh]
— (-]

AR

)
&L eL_J‘



Definitions: a The set { v, € R~ is called orthogonal

AU ,gp}
zero and

if and only if all the vectors are non-

v.°2j=0, i#+j, ,j=1..p

(The vectors in an orthogonal set are mutually perpendicular to each other.)

b The set {lvﬂy

S, } S R is called orthonormal if and only if

ll.-lj;O, i#j, ,j=1..p.

li.lizl’ i=1,2,..p

So this is a set of mutually orthogonal vectors that are all unit vectors.

Remark: If {21,22,

Y

2, } € [” is an orthogonal set, then there is a corresponding orthonormal set

y

hY
{gl,%,...,u}= ( 1, 2 ,
R

which spans the same subspace as the original orthogonal set.

Examples of ortho-normal sets you know already:

cee o

B

1) The standard basis { e.e e } € [R7, or any subset of the standard basis vectors.

1 £ 0 &y

. cos O -sin o
2) Rotated bases in R2. {gl, u .
sin o cos ol

Theorem (why orthonormal sets are very good bases): Let B = { u

Let W= span{gl,gz, ,gp}. Then

Pl s gp} < [R” be orthonormal.

[ . C: =
u, =0
iy
b) Forw € W, the coordinate vector [w]g= is directly computable. In other words,
u w
u,

(§ q\')'LC1l7l)‘ t+ C’zd;,* -+ LFC\),I))-: \:\,J.;“;

O+0O4%.- cj 10~ +0

N

R;”.Gj \






¢) Letx € R". Then there is a unique nearest point to x in ¥, which we call proj,, x, ("the projection of
Xxonto W.") The formula for this projection is given by

prOijz (ul -x)gl + (lz -5)&2 + ...+ ( -;)u .

u
P P

(As should be the case, projection onto # leaves elements of I fixed.)

=L

Proof: We will use the Pythagorean Theorem to show that the formula above for proj,, x yields the
nearest point in Wto x :

Define <
-
z=x—prolei| Z -L\/\/ 4 w ,Pmo.w.»
— _ 5 W
u\-\- z—%- (ul -x)ul - (uz-x)uz - (up°x)up.) . uJ-
Then forj=1,2, ... p,
Z.'%:l’% ‘X'%:O.
Soz L W,ie.
Z (tlul-i-tzgg + . tplp)ZO

for all choices of the weight vector £ .

Letw € W. Then
I = l* = | (x = projys ) + (projyx -) |-
Since (x — proj,x ) =zand since (proj,x -w) € W, we have the Pythagorean Theorem
Il = = || 2= projy |° + [projyx ~af
e — i = || 2 |* + |[proj,x -w|f -

So|k — v_v“z is always at least || z || 2. with equality if and only if w = proj, x.
QED



Exercise 1
la) Check that the set

2 1 -2
1 1 1
B=1—|2| =| 2] =] 1
3 "3 * 3

1 2 2

is an orthonormal basis for R3.

we dad Huis

1

1b) Forx=| 2 | find the coordinate vector [x]g and check your answer.

: R Hasg ;

solution [x]g = | 1
2



Exercise 2 Consider the plane from Tuesday

1 1
1. |
W=spani| 1 |, | O W™+ Nl i . © _.]
3 W—L_:SP“"‘ L2 -5 l]"]
[

3] Hf[%l

which is also given implicitly as a nullspace,

W=Nul[2 -5 1] ‘

2a) Verify that g bres W) o Nl (2 -5 )
1 2 . .
RN B N ,Ll % 2-din'f
S, Ve, J (> -5 QY‘YO
isanortho-normalbas.isforW. [7- < llzl =0 (7_ A 7; -,
| [‘01]
< I \
B L2))
AYe a Lag.\,';
o W
1 - - FIRN
\DMAW L—?) = (X' \)l" +(x"”z\l"7, solution proj,x= | 2
BRI A
= clol]|@]o 3 [
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Remark: As we mentioned, if {21, AU

vectors), then there is the corresponding orthonormal basis obtained from that set by normalizing, namely

2, } € R~ is an orthogonal set (of mutually perpendicular

Y Y v
{ll’lz""’lp}: 1 ,l,..., P_c Re
2 [ 1% |

One can avoid square roots if one uses the original orthogonal basis rather than the ortho-normal one.
This is the approach the text prefers. For example, for orthogonal bases, the very good basis theorem
reads

Theorem (why orthogonal bases are very good bases): Let B = { Yy Yy s B } € [R” be orthogonal. Let

W=Span{zl,22, ,zp} Then

a) { Yy Yy e B } is linearly independent, so a basis for 7.

b) Forw e W,
W= (s wyuy (1w o (1w
Y. °w V,* W Yy W
po G2, ) )Ep
EAl EX X

¢) Letx € R". Then there is a unique nearest point to x in ¥, which we call proj,, x, ("the projection of

x onto W.") The formula for this projection is given by

Projyx= (i, *x)u, + (i, XY, + o + (1,0 X)u,.
V. X V,*X Yy X

proj, X = ( ! )21 + (_2 2) yz-i- ... + (—p 2) xp
2 || BN

You can see how that would have played out in the previous exercise.



Nov- 16 (w:l«gk«m )

Fri Agm=h :
. .3-6.4 Gram-Schmidt process for constructing ortho-normal (or orthogonal) bases e
A = Q Rmafrix factorization. (I'll bring notes to class for the second topic, 1f 1 | have time

on Friday. Otherwise we'll discuss it on Monday.)
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Start with a non-orthogonal basis B = {w., w_, ... w | for a subspace W of R*. How can you convert it
g oWy o W p y

into an orthonormal basis? Here's how! The inductive process is called Gram-Schmidt orthogonalization.

Let W1 = span {ml } Define u = ” w H . Then {ll } is an orthonormal basis for Wl'

2 _:,' W,
o b\‘ WI
L
A
Let W, = span {&1, w, }
Letz,2 =W, —projwmz, S0 Z, 1 u,.
1
) . .
Deﬁneg2 = W So {gl, lz} 1s an orthonormal basis for WZ'
Z,
W,
W,
z
@, >
. W

oL
_FL¥

w, ¥
J S — -
= (wz.ul]\kl
i:w — proy W
2 2_, P lez
W=



Let W3 = span {yl,&z,m3 }

Let z, = w, —projW w,, soz, LW,

Define u, = H ” . Then { Uy, Uy } is an orthonormal basis for W3.
3
WS
Inductively,
Let W] = Sp‘m{&p&z’ %} = Span{ll,lz, LU 1,%}
Letz, =w, pmej_lﬁj A G L € o L LRy L
Define u = ”2 H . Then {gl,%, %} is an orthonormal basis for WJ .
J

Continue up to j = p.



Exercise 1 Perform Gram-Schmidt orthogonalization on the basis

(0,u)
B 1 0
2115 S
. . 2
Sketch what you're doing, as you do it. \/—v' \l_\l, \ W\ =5pan “—‘\]]
\ 2
u’ = \’2' =L [r} (7-)7'\
(A R ) i
u, >
0 - o . L _l_. l —J
iyl Glal) o) .
—_—

=(z

; 2 01
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Exercise 2 Perform Gram-Schmidt on the basis

1 0 1

B=i| 1|41 -2

0 0 3

This will proceed as in Exercise 1 until the third step, i.e.
-1
1
0

1

u = u, =

1 1
— I 1 b I
1 \/7 0 =2 \/7



The A = Q R matrix decomposition:

We're denoting the original basis for Wby B = { w
constructed with Gram-Schmidt by O = {

these two bases in terms of each other. Notice

Wy W } Denote the orthonormal basis we've
4

Wi, . 1, } . Because O is orthonormal it's easy to express

Wj=span {ml,%, &j}: span {ll’lz’ gj} foreach1 <j < p.

So,

Notice that the coefficients of the last terms in the sums above, namely (w.

w.eu ) can be computed as
7T

. B
(%) =5 Iz 2]+
In matrix form (column by column) we have

— - i =~ ,’J
: 1 . |\ { l wl.u‘ wl“\ W3“| - - WP “l
| ' ( R — D
St g S 0 Wom wem Wy
* “\/\l‘;J‘L' :w" = d : Wyt ‘l: 0 - ,} s P' :
b ST s
| '| ( | ' ' Q o
: ' | ! L O O D \TVIJf‘ ‘Lf’
—
N " L/’ﬁ//—/)
A“ A\ " “ 0
tolumang ave Q R ' .
owy el bosrs volumns are U“’Pfu\ A u\.\c.f" woth
3 3 ‘
{—v» w o ororm Ale 2t
Ap\xl) Qh,#‘, R’P*F d 1 J

R A-ISO ko as

P
sc0 ©
Thus any matrix with linearly independent columns may be written in factored form as above, (
W= _ColA),

A =0 _ R _.
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