
Math 2270-002  Week 12 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  6.1-6.4 

Chapter 6 is about orthogonality and related topics.  We'll spend maybe two weeks plus a day in this 
chapter.  The ideas we develop start with the dot product, which we've been using algebraically to compute
individual entries in matrix products, but which has important geometric meaning.  By the end of the 
Chapter we will see applications to statistics,  discuss generalizations of the dot product, "inner products", 
which can apply to function vector spaces and which lie at the heart of physics applications that use 
Fourier series, and more recent applications such as image and audio compression, see e.g.

https://en.wikipedia.org/wiki/Discrete_cosine_transform
     

Mon Nov 12
       6.1-6.2   dot product, length, orthogonality, projection onto the span of a single vector, and angles -  
in n.

Announcements: 

Warm-up Exercise:
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Recall, for any two vectors v, w n , the dot product v w is the scalar computed by the definition

v w  
i = 1

n

vi wi .

We don't care if v, w are row vectors or column vectors, or one of each, for the dot product.

We've been using the dot product algebraically to compute entries of matrix products A B, since 

entryi j A B  = rowi A  colj B  = rowi A  colj B  .

The algebra for dot products is a mostly a special case of what we already know for matrices, but worth 
writing down and double-checking, so we're ready to use it in the rest of Chapters 6 and 7.

Exercise 1  Check why

1a)    dot product is commutative:         
 v w  = w v .

1b)  dot product distributes over addition:       
u v w = u w  v w  

u v w = u v  u w 

1c)  for k , 
k v  w = k v w = v  k w .

1d)  dot product distributes over linear combinations:

v  c1 w1 c2 w2 ...   ck wk = c1 v  w1   c2 v w2   ...  ck v wk . 
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v w  
i = 1

n

vi wi 

1e)  

v v 0   for each v 0    (and 0 0 = 0. )

Chapter 6 is about topics related to the geometry of the dot product.  It begins now, with definitions and 
consequences that generalize what you learned for 2, 3 in your multivariable Calculus class, to n .

2)   Geometry of the dot product, stage 1.  We'll add examples with pictures as we go throught these 
definitions.

2a)   For v n  we define the length or norm or magnitude of v by

v   
i = 1

n

vi
2  = v v

1
2  .

Notice that the length of a scalar multiple of a vector is what you'd expect:

  t v  = t v t v
1
2 = t2 v  v

1
2

 =  t v  .

Also notice that v 0 unless v = 0.

2b)  The distance between points (with position vectors) P, Q is defined to be the magnitude of the 
displacement vector(s) between them, Q P   (or P Q ).
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2c)  For  v, w n, we define v to be orthogonal  (or perpendicular) to w  if and only if
v  w = 0.

And in this case we write v w.

Note:  In 2 or 3 and in your multivariable calculus class, this definition was a special case of the identity

v w = v  w  cos

where  is the angle between v, w.  (Because cos = 0 when =
2

.  ) That identity followed from the 

law of cosines, although you probably don't recall the details.  Today we'll use the identity  above to define 
angles between vectors, in n, and show that it makes sense. (Next week, in section 6.6 we'll see that what
we call "cos " in Math 2270 is known as the "correlation coefficient" in linear regression problems in 
statistics.  In about two weeks, we will use the same identity to define angles between functions and 
perpendicular functions, in inner product function spaces, sections 6.8-6.9.) 

2d)  The n reason for defining orthogonality as in 2c is that the Pythagorean Theorem holds for the 
triangle with displacement vectors  v, w and hypotenuse v w if and only if v w = 0.    Check!
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2e)   A vector u n is called a unit vector if and only if  u = 1.  

2f)  If v n  then the unit vector in the direction of v is given by 

u =
1
v v.  

2g)  Projection onto a line.  Let v n be a non-zero vector, let L = span v  be a line through the origin.  
Then for any x n the projection of x onto L is defined by the formula

projL x  x u  u     

for u the unit vector in the direction of v, u =
1
v v.   Equivalently

projL x  
x v  
v 2 v .

Then the vector 
z x x u  u 

is perpendicular to every vector in span v = span u .  Thus every triangle containing (the point with 
position vector) x, (the point with position vector)  projL x, and another point (with position vector) w on 
the line L is a Pythagorean triangle.  Consequently,   projLx is the (position vector of) nearest point on L to
(the point with position vector)  x .   
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2h)  Refer to the same diagram as in 2g, which is an n picture.  Using the Pythagorean triangle with 
edges x u u, z, x we have

x u u 2  z 2 =  x 2,  i.e.

x u 2  z 2 =  x 2.

The quantity x u is called the component of x in the direction of u, and from the formula above,

 x  x u   x  .

Define the angle  between v and w the same way we would in 2, using the congruent triangle in the 
figure below, namely

cos = 
x u  
x .

Notice that  1 cos  1 and so there is a unique  with 0  for which the cos  equation 

can hold.  Substituting u =
v
v  gives the familiar formulas that you learned in multivariable Calculus for

2, 3, which now holds in n.

cos =
x v

v  

x =  
x v  
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x v  = x v  cos   
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3)  Summary exercise    

a)  In 2, let L = span
2

1
.  Find projL

3

4
.   Illustrate.  

b) Verify the Pythagorean Theorem for some triple of points where two of them are 3, 4 , the point with 

position vector  projL
3

4
, and the third one is any other point on L = span

2

1
.
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Tues Nov 13
        6.2-6.3  Orthogonal complements, and the four fundamental subspaces of a matrix revisited.

Announcements: 

Warm-up Exercise:

o midterms returnedtomorrow
short HW due tomorrow

quiz will involveprojection ideas

Today coso formula in 112 Mondaynotes
then Tuesnotes

til 12 58 so you can atleastwritedown
theproblem

let L span lil it'd
a Compute projet for I f f using pnojhx fx.nu CxjEIpv

b Find theangle 0 4 I t zit
t

z

using cos L
1151111011

c illustrate z

ain Eli i Ent i
tOiii ffd.ttD'al'd nElliottDlil th n

Hey
FI

b coso fZo l'd
try 2 t

05 f Zyx



Orthogonal complements, and the four subspaces associated with a matrix transformation, revisited more 
carefully than our first time through.

Let W n be a subspace of dimension 1  p n.  The orthogonal complement to W is the collection 
of all vectors perpendicular to every vector in W.  We write the orthogonal complement to W as W , and 
say "W perp".  Let  B  = w1, w2, ... wp  be a basis for W.  Let v W .   This means

c1w1 
 c2 w2  ... cp wp  v = 0 

for all linear combinations of the spanning vectors. Since the dot product distributes over linear 
combinations, the identity above expands as 

c1 w1 v c2 w2 v   ... cp wp v  = 0
for all possible weights.  This is always true as soon as we check the special cases 

w1 v = w2 v = ... = wp v = 0.

In other words, v  Nul A where A is the m n matrix having the spanning vectors as rows:

 A v = 

     w1
T      

w2
T

:

wp
T

v1

v2

:

vn

 =  0.

So
W = Nul A.

Exercise 1  Find W  for W = span

1
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Theorem:  Let A be any m n matrix.  Then Row A = Nul A.   

Theorem.  Conversely, let A be an m n matrix.  Then Nul A  = Row A.  

Corollary  Let W n be a subspace.  Then  W = W .
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Exercise 2  For W = span

1

1

3
,  

1

0

2
 as in Exercise 1, verify that W = W.
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Theorem (fill in details).

1a)  Let W n be a subspace with dim W = r,  1  r n.  Then dim W = n r, so 
dim W dim W  = n  

Hint:  Use reduced row echelon form ideas.

1b)  W  W  = 0

Hint:  Let x W  W .  Compute x  x.

1c)  Let   B  = w1, w2, ... wp  be a basis for W  and  C = z1, z2, ... z n p  be a basis for W .   Then 
their union, B C ,  is a basis for n.

Hint:  Show B C  is linearly independent.

1d)  Every x n can we written  as x = w  z  with unique choices of w W and z W .
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Remark:  From the discussion above and our previous knowledge, we see that for any m n matrix A, 
Row A  = Nul A;   Nul A  = Row A;  dim Row A  = r, dim Nul A  = n r, where r is the rank 

of the matrix.  Furthermore from 1d on the previous page, each  x n can we written uniquely as  
x = w  z  with  w Row A and z Nul A.  So for the linear transformation

T x   A x 
we have

T x = A x = A w  z  = A w  A z = A w.

By the same reasoning applied to the transpose transformation from m n, the codomain of T 
decomposes into Col A = Row AT and (Col A = Nul AT, with dim Col A = r  and 
dim Nul AT  = m r.  In other words, we have justified the diagram we really only waved our hands at 
back in Chapter 4:
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Wed Apr 4
         6.2-6.3  very good bases revisited:  orthogonal and orthonormal bases.  Projection onto multi-
dimensional subspaces.  

Announcements: 

Warm-up Exercise:
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Definitions:  a    The set v1, v2, ... , vp n is called orthogonal if and only if all the vectors are non-
zero and

vi vj = 0,      i j,  i, j = 1 ...p
(The vectors in an orthogonal set are mutually perpendicular to each other.)

b  The set u1, u2, ... , up
n is called orthonormal if and only if

ui uj = 0,      i j,  i, j = 1 ...p.
ui ui = 1,  i = 1, 2, ...p 

So this is a set of mutually orthogonal vectors that are all unit vectors.   

Remark:   If v1, v2, ... , vp n is an orthogonal set, then there is a corresponding orthonormal set

 u1, u2, ... , up  = 
v1
v1

, 
v2
v2

, ... , 
vp
vp

 

which spans the same subspace as the original orthogonal set.

Examples  of ortho-normal sets you know already:

1)  The standard basis e1, e2, ..., en n, or any subset of the standard basis vectors.

2)  Rotated bases in 2.    u1, u2  = 
cos 

sin 
,  

sin 

cos 
.  

Theorem  (why orthonormal sets are very good bases):  Let B = u1, u2, ... , up
n be orthonormal.   

Let W = span u1, u2, ... , up .  Then

a)  u1, u2, ... , up  is linearly independent, so a basis for W.

b)  For w W,   the coordinate vector w B = 

u1 w

u2 w

:

up w

 is directly computable.  In other words,
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w = u1 w u1  u2 w u2  ...  up w up

j



c)  Let x n.  Then there is a unique nearest point to x in W, which we call projW x, ("the projection of 
x onto W.")   The formula for this projection is given by

projW x = u1 x u1  u2 x u2  ...  up x up .

(As should be the case, projection onto W leaves elements of W fixed.)

Proof:  We will use the Pythagorean Theorem to show that the formula above for projW x yields the 
nearest point in W to x :

Define
z = x projW x   

z = x  u1 x u1  u2 x u2  ...  up x up.
Then for j = 1, 2, ... p, 

z uj = x uj   x uj = 0 .

So z  W, i.e.
z  t1 u1 t2 u2  ... tp up  = 0 

for all choices of the weight vector t .

Let w  W.  Then

x w 2 = x projWx   projWx w
2 .

Since x projWx = z and since  projWx w W, we have the Pythagorean Theorem

x w 2 =  x projWx 
2  projWx w 2 

x w 2 =  z 2 projWx w 2 . 

So x w 2 is always at least  z 2, with equality if and only if w = projW x.  
QED

ni
I w



Exercise 1  
1a)  Check that the set 

B = 
1
3

2

2

1
,

1
3

1

2

2
,

1
3

2

1

2
 

is an orthonormal basis for 3.

1b)  For x = 

1

2

3
  find the coordinate vector  x B  and check your answer.

solution x B = 

3

1

2
 

we did this

this



Exercise 2  Consider the plane from Tuesday

W = span

1

1

3
,  

1

0

2
 

which is also given implicitly as a nullspace, 

W = Nul 2 5 1 .

2a)  Verify that 

B = 
1

5

1

0

2
,  

1

6

2

1

1
 

is an ortho-normal basis for W.

2b)    Find projW x  for x =

7

3

1
.  Then verify that  z = x projW x  is perpendicular to W.

solution projW x = 

5

2

0
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Remark:  As we mentioned, if v1, v2, ... , vp n is an orthogonal  set (of mutually perpendicular 
vectors),  then there is the corresponding orthonormal basis obtained from that set by normalizing, namely

u1, u2, ... , up = 
v1
v1

, 
v2
v2

, ... , 
vp
vp

n .

One can avoid square roots if one uses the original orthogonal basis rather than the ortho-normal one.  
This is the approach the text prefers.  For example, for orthogonal bases, the very good basis theorem 
reads

Theorem  (why orthogonal bases are very good bases):  Let B = v1, v2, ... , vp n be orthogonal.   Let
W = span v1, v2, ... , vp .  Then

a)  v1, v2, ... , vp  is linearly independent, so a basis for W.

b)  For w W,   
w = u1 w u1  u2 w u2  ...  up w up 

w = 
v1 w

 v1
2 v1  

v2 w

 v2
2  v2  ...  

vp w

 vp
2  vp 

c)  Let x n.  Then there is a unique nearest point to x in W, which we call projW x, ("the projection of 
x onto W.")   The formula for this projection is given by

projW x = u1 x u1  u2 x u2  ...  up x up .

projW x =  
v1 x

 v1
2 v1  

v2 x

 v2
2  v2  ...  

vp x

 vp
2  vp.

You can see how that would have played out in the previous exercise.



Fri Apr 6
         6.3-6.4  Gram-Schmidt process for constructing ortho-normal (or orthogonal) bases.  The 
A = Q R matrix factorization.  (I'll bring notes to class for the second topic, if it looks like we'll have time 
on Friday.  Otherwise we'll discuss it on Monday.)

Announcements: 

Warm-up Exercise:
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Start with a non-orthogonal basis B  = w1, w2, ... wp  for a subspace W of n.   How can you convert it 
into an orthonormal basis?  Here's how!  The inductive process is called Gram-Schmidt orthogonalization.

Let W1 = span w1 .  Define  u1 = 
w1

w1
.  Then u1  is an orthonormal basis for W1.

Let W2 = span w1, w2 .

     Let z2 = w2 projW
1
w2,   so z2 u1.

     Define u2 = 
z2
z2

.   So u1, u2  is an orthonormal basis for W2.



Let W3 = span w1, w2, w3 .

     Let  z3 = w3 projW
2
w3,   so z3  W2.

     Define u3 = 
z3
z3

.  Then u1, u2, u3   is an orthonormal basis for W3.

Inductively,

Let  Wj = span w1, w2, ... wj  = span u1, u2,  ...  uj 1, wj .

     Let zj = wj  projW
j 1

 wj  = wj  wj u1 u1   wj u2 u2    ... wj uj 1 uj 1    .

     Define  uj = 
zj
zj

.   Then u1, u2, ... uj   is an orthonormal basis for Wj .

Continue up to j = p.



Exercise 1  Perform Gram-Schmidt orthogonalization on the basis 

B = 
1

1
,  

0

4
.

Sketch what you're doing, as you do it.
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Exercise 2  Perform Gram-Schmidt on the basis

B =

1

1

0
,

0

4

0
,

1

2

3
.

This will proceed as in Exercise 1 until the third step, i.e.

u1 =
1

2

1

1

0
,  u2 =

1

2

1

1

0
  



The A = Q R matrix decomposition:

We're denoting the original basis for W by B  = w1, w2, ... wp .  Denote the orthonormal basis we've 
constructed with Gram-Schmidt by O = u1, u2, ... up  .  Because O is orthonormal it's easy to express 
these two bases in terms of each other.  Notice

Wj = span w1, w2, ... wj  =  span u1, u2, ... uj       for each 1 j p.

So,

w1 = w1 u1 u1 

w2 = w2 u1 u1  w2 u2 u2 
:

wj = wj u1 u1  wj u2 u2  ....   wj uj uj 
:

wp =
l = 1

p

wl ul ul  .

Notice that the coefficients of the last terms in the sums above, namely wj uj  can be computed as

wj uj = zj
zj
 zj

=  zj .

In matrix form (column by column) we have

Thus any matrix with linearly independent columns may be written in factored form as above, (
W = Col A ,

An p = Qn p Rp p.


