
Math 2270-002  Week 11 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  5.4-5.5, 6.1.  

Mon  Nov 5
       5.4-5.5  Brief intro to Matlab, continued discussion of change of variables to understand linear 
transformations, and introduction to complex eigenvalues and eigenvectors
     

Announcements: 

Warm-up Exercise:
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Monday Review and look ahead:

We've been studying eigenvectors and eigenvalues for square matrices A, and the notion of 
diagonalizability, which we first understood in an algebraic sense.  

On Friday we talked about how linear transformations  T : V W are associated with matrix 
transformations from n m, once we choose bases   B = b1, b2, ... bn  for V,  C = c1, c2, ... cm  for 
W.   

This general framework is connected to matrix diagonalizability, and to more general notion of "similar 
matrices" when we have linear transformations from n to n expressed in one coordinate system, and 
wish to change to another one.  On Friday we understood how the algebraic identity for diagonalizable 
matrices

D = P 1 A P 

is related to this "change of coordinates" framework:  For a diagonalizable matrix A, the identity above is 
also a change of variables identity for understanding the matrix transformation T x = A x first given in 
standard coordinates; instead with respect to the eigenbasis for n, B = b1, b2, ... bn which constitutes 
the columns of P.  In fact,  the identity above can be read as

T  = P E  T E  PE  
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So far, all of our eigendata has been real, but it's possible to have complex eigenvalues and eigenvectors as 
well, in which case we switch from considering real number scalars to considering complex number 
scalars and proceed as before.  We'll introduce those ideas today and tomorrow, in section 5.5.  

On Wednesday, I tentatively plan to begin Chapter 6 on "Orthogonality".  This Chapter will lead to 
amazing applications, but it begins with a review and extension of dot product ideas related to angles 
between vectors and orthogonality in n, that you learned about in multivariable Calculus for 2 and 3.  
There will be a relatively short homework assignment due next Wednesday, containing preliminary 
Chapter 6 material.

On Friday we have our second midterm exam, which will cover sections 4.1-4.6, 4.9 (and google page 
rank), 5.1-5.5.  I'll reserve a room for a problem session on Thursday, where we will go over a practice 
exam.  



For your extra credit homework problem, and because you want to familiarize yourself with Matlab for the
upcoming chapter as well, I'll demo Matlab.

Here are the two Matlab scripts I've created for this week. You can download these from either our public 
homework page or CANVAS.  Put them into a directory and open them from Matlab.  When you run the 
script with the big arrow at the top of your Matlab window all the commands will be executed.  You can 
modify the script as desired.

The file "matrixcomputations.m"    (The .m signifies matlab file.)  :

% some matlab commands for matrices...if you want more just use google.

% enter a matrix row by row, each row terminates with ";"
A=[1 2 3; 4 5 6]   %use spaces or commas to separate row entries
AA=[3 5 9;2 4 6];  %if you put a semi-colon at the end the computation
                   %isn't echoed in the command window.

%rref computes reduced row echelon form.  I named the result 
% with an equals sign and a name, so
%that it would be saved to my workspace after running the script

B=rref(A)

% augmenting a matrix, either by rows or columns:  first by row

b=[1,0,0]   %row vector .. 
C=[A;b]  % add a 3rd row to A, using b
          % use semicolons to separate rows
D=rref(C) % the 3 by 3 matrix D is invertible, since D is the identity
E=C^(-1)  % inverse matrix...everything is decimals

F= C*E  % this is how you multiply matrices!  should get identity

% augmenting a matrix by columns

g=[-1;3] % a column vector with two entries
H=[A,g] % augment A with the column g
K=rref(H) %reduce the augmented matrix to find solutions to Ax=g

% eigenvalues and eigenvectors

L=[2,1,0;0,2,0;0,0,3]
lambda=eig(L)  % eigenvalues
[M,N]=eig(L)  % eigenvalues in first diagonal matrix, 
              %eigenvectors in second matrix
              % note that this matrix is not diagonalizable



The file "PAC_team_rankings.m"

% PAC 12 Stochastic Matrix before past weekend
%    AZ  AZS CAL CU  OR  OSU STA UCLA USC UT WA  WAS
SMa=[ 0,  0, 1/3.,0, 1/3,.25, 0,   0,  0,  0, 0,  0;    %AZ
      0,  0,  0,  0,  0, .25, 0,   0  1/3, 0, 0,  0;    %AZS
      0,  0,  0,  0,  0, .25, 0,   0,  0,  0,.5,  0;    %CAL
      0, 1/3 ,0,  0,  0,  0,  0,  1/3, 0,  0, 0,  0;    %CU
      0,  0, 1/3  0,  0,  0,  0,   0,  0,  0,.5,  0;    %OR
      0,  0,  0, 1/3, 0,  0,  0,   0,  0,  0, 0,  0;    %OSU
      0, 1/3, 0,  0, 1/3, 0,  0,   0, 1/3, 0, 0,  0;    %STA
     1/3, 0, 1/3, 0,  0,  0,  0,   0,  0,  0, 0,  0;    %UCLA
     1/3, 0,  0, 1/3, 0,  0,  0,   0,  0,  0, 0,  1;    %USC
     1/3, 0,  0,  0,  0,  0, .5,  1/3,1/3, 0, 0,  0;    %UT
     0,  1/3, 0, 1/3, 0,  0,  0,  1/3, 0, .5, 0,  0;    %WA
     0,   0,  0,  0, 1/3,.25,.5,   0,  0, .5, 0,  0;]   %WAS
 
 %create a regular stochastic matrix with google fudge factor:
SMb=.15/12*ones(12,12)+.85*SMa

 % the columns of a large power of SMb should be essentially identical,
 % and are the equilibrium solution.  The entries can be used to rank
 % the Pac 12 teams, based on current records.
SMb^20

f



Returning to 5.4-5.5:
T  = P E  T E  PE  

Exercise 1   (To review change of basis)   Try to pick a better basis to understand the matrix transformation
T x = A x, even though the matrix A is not diagonalizable.  Compute M = P 1A P  or compute M directly,
to see if it really is a "better" matrix.
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5.5 Complex eigenvalues and eigenvectors.

We'll focus on 2 2 matrices, for simplicity.   In this case it will turn out that a matrix with real entries and
complex eigenvalues is always similar to a rotation-dilation matrix...

Definition  A matrix of the form A =
a b

b a
 is called a rotation-dilation matrix, because for 

r = a2 b2  we can rewrite A as

A = r  

a
r

b
r

b
r

a
r

 =  r 
cos sin

sin cos
 .

So the transformation T x = A x  rotates vectors by an angle  and then scales them by a factor of r.  (So 
A2 rotates by an angle 2  and scales by r2;  A3 rotates by an angle 3  and scales by r3, etc.  

Exercise 2)   Draw the transformation picture for

T
x1
x2

= 
1 1

1 1

x1
x2

and interpret this transformation as a rotation-dilation.  Overlay your diagram onto one picture:  How about
the transformation picture for T T = T2 ?
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Exercise 3)  What are the eigenvalues of a rotation-dilation matrix A =
a b

b a
 ?   How do you think you

would go about finding the eigenvectors?
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Tues Nov 6
  

  5.5  Complex eigendata
     

Announcements: 

Warm-up Exercise:
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It is possible for a matrix A with real entries to be diagonalizable if one allows complex scalars and vectors,
even if it's not diagonalizable with real eigenvalues and eigenvectors.  You saw an example of that on a 
food for thought problem, if you weren't afraid.  We'll use a matrix today that we'll use later as well, in 
section 5.6, to study an interesting discrete dynamical system.  This matrix is not a rotation-dilation matrix, 
but it is similar to one, and that fact will help us understand the discrete dynamical system.

Exercise 1)  Let

B =
.9 .4

.1 .9
Find the (complex) eigenvalues and eigenvectors for B.
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General facts we saw illustrated in the example, about complex eigenvalues and eigenvectors:  Let A be a 
matrix with real entries, and let 

A v =  v  

with = a  b i, v = u i w complex,  (a, b , u, w n .  Then we write

Re  = a,   Im  = b

Re v = u,      Im v = w.

So, the equation A v =  v expands as

A u  i w  = a b i u i w .

It will always be true then that the conjugate   =  a  b i  is also an eigenvalue, and the conjugate vector  
v = u i w  will be a corresponding eigenvector, because it will satisfy

A u  i w  = a b i u i w  

Exercise 4  Verify that if the first eigenvector equation holds, then

A u = a u  b w 
A w = b u  a w 

Then check that these equalities automatically make the second conjugate eigenvector equation true as well.
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Theorem   Let  A be a real 2 2 matrix with complex eigenvalues.  Then A is similar to a rotation-dilation 
matrix.

proof:  Let a complex eigenvalue and eigenvector be given by  = a  b i, v = u i w complex,  (
a, b , u, w n   Choose

P =  Re v    Im v  = u  w   

(One can check that u, w  is automatically independent.)  Then, using the equations of Exercise 4, we 
mimic what we did for diagonalizable matrices...

A u  w   = a u  b w, b u  a w   

=  u  w   
a b

b a
  .

A P = P 
a b

b a
  

P 1 A P =  
a b

b a
.

(The matrix on the right is a rotation-dilation matrix  ... nobody ever said what the sign of b was.   :-) )
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It's a mess, but one can carry out the procedure of the theorem,  for the matrix B in exercise 1, 

B =
.9 .4

.1 .9

using = .9 .2 i,  v = 
2 i

1
= 

0

1
i

2

0
   , one gets

P =  Re v    Im v =
0 2

1 0
,               P 1 =

1
2

0 2

1 0
 

P 1B P = 
1
2

0 2

1 0
 

.9 .4

.1 .9

0 2

1 0
 

P 1B P =
.9 .2

.2 .9
 = .85

.9

.85

.2

.85

.2

.85

.9

.85

  

P 1B P = r 
cos sin

sin cos
 .

for r = .85 .92   ,  = arctan
2
9

.22 radians.

Application on next page, to browse through...

we'll look this over on Wednesday







Example:  From the algebra yesterday, and after a fair amount of work,  For the dynamical system

gk 1

hk 1
 =  

.9 .4

.1 .9

gk
hk

and with 
g0

h0
=  

100

0
,  one can calculate and understand the spiral picture...

gk
hk

 =
.9 .4

.1 .9

k 
100

0
 =  = .92k

100 cos k 

50 sin k 
 

 .22 radians.



yipes!  

For r = .85 .92   ,  = arctan
2
9

.22 radians.

B = r P
cos sin

sin cos
P 1 

B2 = r2 P
cos 2 sin 2 

sin 2 cos 2 
P 1

Bn = rn P 
cos n sin n 

sin n cos n 
P 1 

Bn
100

0
 = .92n 

0 2

1 0
 

cos n sin n 

sin n cos n 
1
2

0 2

1 0

100

0
  

.92n
0 2

1 0
 

cos n sin n 

sin n cos n 

0

50
 

= .92n
0 2

1 0

50 sin n

50 cos n

= .92n
100 cos n

50 sin n



Wed Nov 7
       Appendix B, the Complex plane .   Brief review for exam 2.

Announcements: 

Warm-up Exercise:
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Complex number algebra and geometry.  
Appendix B of text 

November 7 

a b i  a, b   and i2 1  

Arithmetic:  If z = a b i  and w = c d i  then

z = w  if and only if a = c and b = d.
z w  a c   b d  i  
z w  ac bd ad bc  i 

Focusing on just addition and real-number scalar multiplication,  can be thought of as a real vector space 
of dimension 2.  In this case, the natural basis is  = 1 , i .  Then the coordinate transfromation is an 
isomorphism with 2:

z = a  b i,   z  =
a

b
.

If we identify complex numbers with these coordinates in 2, we get the "complex plane" representation of
:

Exercise 1a)  Illustrate that complex number addition corresponds to vector addition in the complex plane, 
i.e. in the 2 coordinate plane that we have identified with  as above.  Use some of the points labeled 
above.  Also, that real scalar multiplication corresponds to scalar multiplication in the 2 coordinate plane.  

1b)  We define the modulus of  z = a  b i to be z = a2 b2 .  Note that this is just the magnitude of 
the coordinate vector a, b T.  Compute the modulus of some of the vectors in the diagram above.
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Interesting geometry starts happening when you combine the geometry of the complex planes with 
algebraic operations such as complex multiplication.

Exercise 1  Define the transformation T :  by the formula
T z i z,   i.e. T x i y i x iy  = y i x.

1a)  Verify that this is a linear transformation of .

1b)  Describe T geometrically, in terms of its effect in the x, y  coordinate plane.  Include the matrix for T 
with respect to the basis  = 1 , i .
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Exercise 2  Let a, b .  Define the linear transformation T :  by the formula  
T z = a b i z,    i.e. T x i y = a b i x i y .

2a)  
Verify that this is a linear transformation of .

2b)  Describe T geometrically, in terms of its effect in the x, y  coordinate plane.  Include the matrix for T 
with respect to the basis  = 1 , i .
Describe T geometrically, in terms of its effect in the x, y  coordinate plane which we have identified with

.  Include the matrix for T with respect to the basis  = 1 , i .  It should look familiar.
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An important algebraic operation for complex numbers is conjugation:

Definition:  Let z = x  i y .  Then the conjugate of z, z x i y.  Geometrically this is a reflection in the
complex plane, across the x axis.  But the major uses of conjugations are algebraic:

Exercise 2  Let z = x  i y, w = u i v be complex numbers.  Then

2a)  z 2 = z z.

2b)  z w  = z w .

2c)   z w = 0  if and only if  z = 0 or w = 0.

2d)  If z 0 then 
1
z

 exists (i.e. the multiplicative inverse), in fact, 
1
z

=
z
z2 .
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Geometric meaning of complex multiplication:  

We use the polar form of complex numbers, which corresponds to polar coordinates in the 2 coordinate 
plane.

Let z = a  b i.

Let r = a2 b2 =  z . 

Then 

z = r  
a

a2 b2
  

b

a2 b2
 i

z = r cos   i sin  

where  is the polar coordinate angle.

Multiplication!!   If 
z = a  b i = r cos   i sin 

w = c  d i =  cos   i sin   

Then
z w =   r cos   i sin  cos   i sin    

z w  = r  cos  cos  sin  sin   i cos  sin  sin  cos   

z w = r  cos   i sin .

upshot:  when you multiply two complex numbers, their moduli are multiplied, and their polar angles are 
added!

Remark:  Using Euler's formula  that ei  = cos   i sin   the computation above may be expressed as:  
If

z = r ei   and w =  ei  
then

z w = r ei   ei  = r  ei ei  = r  e i   .
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Exercise 3  Play with complex multiplication algebraically (using the rectangular coordinates of complex 
numbers) and geometrically (using their polar forms and the previous page).
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Topics/concepts list for exam 2

4.1  vector spaces and sub vector spaces (subspaces) - abstract definitions.
     realization of subspaces as null spaces or as spans of collections of vectors
     how to check if a subset is a subspace.
     examples such as polynomial vector spaces, matrix vector spaces,  n, and subspaces of all of these.

4.2  Nul A and Col A for T x  = A x;  Kernel T and Range T for general linear transformations T : V W
      how to find Nul A and Col A, and bases for each.

4.3  linearly independent/dependent sets; bases for vector spaces (including subspaces).
        how to check whether the vectors in a set span a vector space.
        how to check whether a set of vectors is linearly independent.
       how to build up bases as  growing sets of independent vectors, one vector at a time, until the set 
spans.  
       how to cull dependent vectors from a spanning set, until it is an independent set.
       

4.4  every basis of n vectors for a vector space V yields a coordinate system, via the coordinate 
isomorphism with n .
       answering questions about span and linear independence for sets of vectors in V by using coordinates 
with respect to a basis.
       favorite examples include Pn, Mm n, the polynomial and matrix spaces.

4.5  dimension of a vector space. basic facts about dimension, number of vectors required to span, 
        maximum number of independent vectors, dimensions of subspaces.  

4.6  rank of a matrix.  rank + nullity theorem.  
       connection to reduced row echelon form of the matrix.
      how to find Row A, Nul AT.
      what Nul A, Row A, Col A, Nul AT have to do with the geometry of the transformation T x = A x.

4.9  Markov chains, stochastic and regular stochastic matrices, steady-state vector, google page rank ideas.

5.1-5.2 eigenvalues and eigenvectors.  Finding eigenvalues via the characteristic equation 
det A  I = 0 ; finding eigenspace bases.

5.3  Diagonalizable and non-diagtonalizable matrices.  Algebraic consequences, e.g. computing large 
powers of diagonalizable matrices.

5.4  Matrices of linear transformations, given domain and codomain bases; change of basis for matrix 
transformations using "better bases". 
       Improved understanding of the transformation T x = A x in terms of n basis made out of 
eigenvectors, as compared to the standard basis.

q



5.5  Complex eigendata.  Finding complex eigenvalues and eigenvectors, especially for 2 2 matrices; 
rotation-dilation matrices.
     
       
computations
fluency in the defintions and concepts
ability to create examples illustrating definitions and concepts
ability to discern whether statements are true or false, based on the material we've covered.
use of material from Chapters 1-3 that relates to Chapters 4-5.
      

i


