Math 2270-002 Week 11 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes cover material in 5.4-5.5, 6.1.

Mon Nov 5
5.4-5.5 Brief intro to Matlab, continued discussion of change of variables to understand linear
transformations, and introduction to complex eigenvalues and eigenvectors
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Monday Review and look ahead:

We've been studying eigenvectors and eigenvalues for square matrices 4, and the notion of
diagonalizability, which we first understood in an algebraic sense.

On Friday we talked about how linear transformations 7 : V'— W are associated with matrix

transformations from R” — R™, once we choose bases B = {b b.,..b } forV, C= {c
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This general framework is connected to matrix diagonalizability, and to more general notion of "similar

matrices" when we have linear transformations from R” to R” expressed in one coordinate system, and
wish to change to another one. On Friday we understood how the algebraic identity for diagonalizable
matrices

D=P ' 4P

is related to this "change of coordinates" framework: For a diagonalizable matrix A4, the identity above is
also a change of variables identity for understanding the matrix transformation 7'(x) = 4 x first given in

standard coordinates; instead with respect to the eigenbasis for R”, B= { Ql , QZ, Qn }which constitutes

the columns of P. In fact, the identity above can be read as
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So far, all of our eigendata has been real, but it's possible to have complex eigenvalues and eigenvectors as
well, in which case we switch from considering real number scalars to considering complex number
scalars and proceed as before. We'll introduce those ideas today and tomorrow, in section 5.5.

On Wednesday, I tentatively plan to begin Chapter 6 on "Orthogonality". This Chapter will lead to
amazing applications, but it begins with a review and extension of dot product ideas related to angles
between vectors and orthogonality in R”, that you learned about in multivariable Calculus for R? and [R3.
There will be a relatively short homework assignment due next Wednesday, containing preliminary
Chapter 6 material.

On Friday we have our second midterm exam, which will cover sections 4.1-4.6, 4.9 (and google page
rank), 5.1-5.5. T'll reserve a room for a problem session on Thursday, where we will go over a practice
exam.



For your extra credit homework problem, and because you want to familiarize yourself with Matlab for the
upcoming chapter as well, I'll demo Matlab.

Here are the two Matlab scripts I've created for this week. You can download these from either our public
homework page or CANVAS. Put them into a directory and open them from Matlab. When you run the
script with the big arrow at the top of your Matlab window all the commands will be executed. You can
modify the script as desired.

The file "matrixcomputations.m" (The .m signifies matlab file.) :
% some matlab commands for matrices...if you want more just use google.

% enter a matrix row by row, each row terminates with ";"

A=[123;456] %usespaces or commas to separate row entries

AA=[359;246]; %if you put a semi-colon at the end the computation
%isn't echoed in the command window.

Y%rref computes reduced row echelon form. I named the result
% with an equals sign and a name, so
Y%ithat it would be saved to my workspace after running the script

B=rref(A)
% augmenting a matrix, either by rows or columns: first by row

b=[1,0,0] %row vector ..
C=[A;b] % add a 3rd row to A, using b
% use semicolons to separate rows
D=rref(C) % the 3 by 3 matrix D is invertible, since D is the identity
E=C"(-1) % inverse matrix...everything is decimals

F= C*E % this is how you multiply matrices! should get identity
% augmenting a matrix by columns

g=[-1;3] % a column vector with two entries
H=[A,g] % augment A with the column g
K=rref(H) %reduce the augmented matrix to find solutions to Ax=g

% eigenvalues and eigenvectors

L=[2,1,0;0,2,0;0,0,3]

lambda=eig(L) % eigenvalues

[M,N]=eig(L) % eigenvalues in first diagonal matrix,
Y%eigenvectors in second matrix
% note that this matrix is not diagonalizable



The file "PAC_team rankings.m"

% PAC 12 Stochastic Matrix before past weekend
% AZ AZS CALCU OR OSU STA UCLA USCUT WA WAS

“

q

“

q

%STA
%UCLA
%USC

%UT

%WA
%WAS

cooooo

PRV

O O = = =

Y%create a regular stochastic matrix with google fudge factor:
SMb=.15/12*ones(12,12)+.85*SMa

% the columns of a large power of SMb should be essentially identical,
% and are the equilibrium solution. The entries can be used to rank

% the Pac 12 teams, based on current records.

SMb”20



Returning to 5.4-5.5:
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5.5 Complex eigenvalues and eigenvectors.

We'll focus on 2 x 2 matrices, for simplicity. In this case it will turn out that a matrix with real entries and
complex eigenvalues is always similar to a rotation-dilation matrix...

-b

Definition A matrix of the form 4 = is called a rotation-dilation matrix, because for

a

r=. a + b~ we can rewrite 4 as sc ¢ r+ b o _\m‘ (VoMK KA

b a
a b | /\/e;/’_‘ i UaTr?
rooor cos(0) -sin(0)
A=r =r
b a sin(0) cos(0)
roor

So the transformation 7'(x) = 4 x rotates vectors by an angle 0 and then scales them by a factor of ». (So

A? rotates by an angle 2 6 and scales by r2; A rotates by an angle 3 6 and scales by r3, etc.

sy - sinT
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Exercise 3) What are the eigenvalues of a rotation-dilation matrix 4 = ? How do you think you

a

would go about finding the eigenvectors?

/ A=atb
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Tues Nov 6

+ 5.5 Complex eigendata
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It is possible for a matrix 4 with real entries to be diagonalizable if one allows complex scalars and vectors,

even if it's not diagonalizable with real eigenvalues and eigenvectors. Yetusaw-anexample-ofthatona
food-forthoughtproblem—ifyou-werentafiraid- We'll use a matrix today that we'll use later as well, in

section 5.6, to study an interesting discrete dynamical system. This matrix is not a rotation-dilation matrix,
but it is similar to one, and that fact will help us understand the discrete dynamical system.

Exercise 1) Let
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General facts we saw illustrated in the example, about complex eigenvalues and eigenvectors: Let 4 be a
matrix with real entries, and let

Av=>Ay

withA=a + bi,y=u + i wcomplex, (¢, b € R, u, w € R"). Then we write

l # Rel=a, ImA=b

Ry “PeJ wt”

IW\ |1-q3 PM'* " Rey=u, Imy=w.

minsd =
_Aa”rt *a..u. L’W l+ 1,' bu\,‘\'OLW ‘

/A(l+im)=(a+bz)( u-+iw).

W\u.g# =

So, the equation 4 ¥y = A y expands as

It will always be true then that the conjugate A = a — b i is also an eigenvalue, and the conjugate véctor

v=u-iw will be a corresponding eigenvector, because it will satisfy
— Same

. A(l—im)=(a—bi)(g—im)| Mqt-zms'
AR iAW <(a-bw) + i(—ba)~47\/)

Exercise 4 Verify that if the first eigenvector equation holds, then

Au=au -bw
Aw=bu + aw

Then check that these equalities automatically make the second conjugate eigenvector equation true as well.



Theorem Let 4 beareal 2 x 2 matrix with complex eigenvalues. Then A is similar to a rotation-dilation
matrix.

proof: Let a complex eigenvalue and eigenvector be given by A =a + b i,y=u + i w complex, (
a,b € R,u,w € R*) Choose

P=[Rey Imy|=[u w]

(One can check that {u, w} 1s automatically independent.) Then, using the equations of Exercise 4, we
mimic what we did for diagonalizable matrices...

a b
“law ] -b a

a b
AP=P

-b a
_1 a b
P AP=

-b a

(The matrix on the right is a rotation-dilation matrix ... nobody ever said what the sign of b was. :-))



—

It's a mess, but one can carry out the procedure of the theorem, for the matrix B in exercise 1,

9 -4
B:
19
-2 0 -2
usingA=.9-214, = | = : +i 0 , one gets
0 -2 4 1] 0 2
P=[Rey Imy]= , P =—
1 0 21-10
. 10 2019 -41]0 -2
P BP=—
21-101((.1 9 1 0
9 2
9 -2 \ .85 NEX
-1
P BP= =, .85
9 2 9
\J -85 \J -85
_ cos(0) -sin(0)
P'BP=r

sin(0) cos(0)

2
forr=,.85 = .92 ,9=arctan(3] =~ .22 radians.

Application on next page, to browse through...



7.5 Complex Eigenvalues 343

72. Use the method outlined in Exercise 70 to check for a. Are the column vectors of the matrices A — A1/ and

which values of the constants a, b, and ¢ the matrix A — Ay I eigenvectors of A? Explain. Does this work
L a b for other 2 x 2 matrices? What about diagonalizable
A= {0 0 c| is diagonalizable. n x n matrices with two distinct eigenvalues, such
0 0 1 as projections or reflections? (Hint: Exercise 70 is
helpful.)
73. Prove the Cayley-Hamilton theorem, fy(A) = O, for b. Are the column vectors of

diagonalizable matrices A. See Exercise 7.3.54.

]
ae!

i with eigenvalues A; = Sand A = —1(see Examiple 1).

0 A

74. In both parts of this problem, consider the matrix A [Al 0 ]

2
3
eigenvectors of A? Explain.
/
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:A Complex Eigenvalues

Imagine that you are diabetic and have to pay close attention to how your body
metabolizes glucose. After you eat a heavy meal, the glucose concentration will
reach a peak, and then it will slowly return to the fasting level. Certain hormones
help regulate the glucose metabolism, especially the hormone insulin. (Compare with
Exercise 7.1.52.) Let g(z) be the excess glucose concentration in your blood, usually
measured in milligrams of glucose per 100 milliliters of blood. (Excess means that
we measure how much the glucose concentration deviates from the fasting level.) A
negative value of g (1) indicates that the glucose concentration is below fasting level
at time 1. Let/1(t) be the excess insulin concentration in your blood. Researchers have
developed mathematical models for the glucose regulatory system. The following is
one such model, in slightly simplified (linearized) form.

gt + 1) =ag(t) — bh(t)
Wit +1)=cgt) +dh()

(These formulas apply between meals; obviously, the system is disturbed during and
right after a meal.)

In these formulas, a, b, ¢, and d are positive constants; constants a and d will
be less than 1. The term —b/(t) expresses the fact that insulin helps your body
absorb glucose, and the term cg(#) represents the fact that the glucose in your blood
stimulates the pancreas to secrete insulin.

For your system, the equations might be

gt +1) =0.9g(t) —0.4h(t)
h(t +1) =0.1g(t) + 0.9A(z),

with initial values g(0) = 100 and 1(0) = 0, after a heavy meal. Here, time ¢ is
measured in hours.

Afterone hour, the values willbe g(1) = 90 and #(1) = 10. Some of the glucose
has been absorbed, and the excess glucose has stimulated the pancreas to produce
10 extra units of insulin.

The rounded values of g(¢) and /1(¢) in the following table give you some sense
for the evolution of this dynamical system.




344 CHAPTER 7 Eigenvalues and Eigenvectors
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g(r) 100 90 77 62.1 463 306 157 23 93 29 1.6 95
h(t) 0 10 18 239 277 296 297 283 257 -2 —8.3 03

We can “connect the dots” to sketch a rough trajectory, visualizing the long-term
behavior. See Figure 1.

h(r)

o+ Si=22

Figure 1

We see that after 7 hours the excess glucose is almost gone, but now there are ]
about 30 units of excess insulin in the system. Since this excess insulin helps to '
reduce glucose further, the glucose concentration will now fall below fasting level, -
reaching about —30 after 15 hours. (You will feel awfully hungry by now.) Under

normal circumstances, you would have taken another meal in the meantime, of

course, but let’s consider the case of (voluntary or involuntary) fasting.
We leave it to the reader to explain the concentrations after 22 and 29 hours, in
terms of how glucose and insulin concentrations influence each other, according to
our model. The spiraling trajectory indicates an oscillatory behavior of the system: g
Both glucose and insulin levels will swing back and forth around the fasting level,
like a damped pendulum. Both concentrations will approach the fasting level (thus =
the name). )
Another way to visualize this oscillatory behavior is to graph the functions g(r)
and /(1) against time, using the values from our table. See Figure 2.
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Example: From the algebra yesterday, and after a fair amount of work, For the dynamical system

Ek+1 9 -4 &
h, . 19 h,
£o 100
and with 5 = , one can calculate and understand the spiral picture...
0

k
9 -4

d 9

100
0

100 cos (k£ 0)
50 sin(k0)

2k

0 = .22 radians.



yipes!

2
Forr=,.85 = .92 ,0=arctan [ 9 j = .22 radians.

B'=/"P p!
sin(n0) cos(n0)
100 0 -2 ][ cos(n8) -sin(n®) |1 [ 0 2][ 100
B’ =.92 -
0 10 sin(n@) cos(n@) |2 -1 0] O
- 0 -2 ][ cos(n8) -sin(n0) |[ 0
. 10 sin(n0) cos(n0) »‘50
0 -2 ][ 50sin(n6)
=.92"
1 0 -50 cos(n0)
| 100 cos(n6)

50 sin(n0)




Wed Nov 7
« Appendix B, the Complex plane C. Brief review for exam 2.
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Complex number algebra and geometry.
Appendix B of text
November 7

C:={a+bila,b €ER andi* =-1}

Arithmetic: Ifz=a+ bi andw=c + di then

z=w ifandonlyifa=cand b=d.
z+w:=(a+c)+ (b+d)i
(a4 b)(c4dy) = zw:= (ac—bd)+ (ad+bc)i

Focusing on just addition and real-number scalar multiplication, C can be thought of as a real vector space

of dimension 2. In this case, the natural basis is § = {1, i}. Then the coordinate transfromation is an
isomorphism with [R2:

a

z=a+ bi, [Z]B: b

If we identify complex numbers with these coordinates in R2, we get the "complex plane" representation of

C: Pt'c'('wu!j
. ("12) * (2,1)
v (] )l
Y
W x
XY , 1 4 t2 . B
/ (33-2')
;T 2
‘ ; Y "
-2 -—) \ 2
- -
Uiy 324
-2 »

Exercise 1a) Illustrate that complex number addition corresponds to vector addition in the complex plane,
i.e. in the R? coordinate plane that we have identified with C as above. Use some of the points labeled
above. Also, that real scalar multiplication corresponds to scalar multiplication in the R? coordinate plane.

1b) We define the modulus of z=a + bitobe|z| =+ a* + b* . Note that this is just the magnitude of
the coordinate vector [a, b ]T. Compute the modulus of some of the vectors in the diagram above.

"‘) (1*1:)“'(3"2’{) = 5 - " ¢ anl \;?\(lm{"
z\w

[z‘] * [sl [f)} usiﬂj bsends 20) |3 -22\ '-l/c_f:; =/

2(2+3) =9 +20 r\ﬂzmz [1]

V/



Interesting geometry starts happening when you combine the geometry of the complex planeg with
algebraic operations such as complex multiplication.

Exercise 1 Define the transformation 7 : C— C by the formula
re. T'(x+iy)=i(x+iy)=-y+ix ¢ real
la) Verify that this is a linear transformation of C.
D) Thew) = <(24w) = 2 +iw =TRI+TW) () Tla)=
1b) Describe T geometrically, in terms of its effect in the (x, y) coordinate plane. Include the matrix for 7 1 ¢ 2

with respect to the basis f = {1, i}. Loovd\ 'Pla.w, < (%)
=< TR

N [T] = [ By} (T )X ) )
[R)=:2 & t\' ]& ]5

K

- =| 0 -q o achs s ,

T()= 1= | o awv'l‘pljfjj?rlkz 5 G

Cr@] = [o Sawe in € i AN .

‘S \ (—,;0) (1,0)

Er =4 Lj TLEJz [‘ﬂ

2

T ()= 5% =+ \_'m T@:[1]
[T - [4 A )
3

y x ({1




Exercise 2 Leta, b € R. Define the linear transformation 7" : C— C by the formula

T(z)=(a+bi)z, ie.T(x+iy)=(a+bi) (x+iy).
2a)
Verify that this is a lmear transformatlon of C.

SQM as i

2b) Describe T geometrically, in terms of its effect in the (x, ) coordinate plane. Include the matrix for 7
with respect to the basis B = {1, i}.
Describe T geometrically, in terms of its effect in the (x, y) coordinate plane which we have identified with
C. Include the matrix for 7 with respect to the basis B = {1, 7}. It should look familiar.

(@+hi)l =av 4b."

L), = (tréy freey, ] ek

TR (askila | T ()= & +he T = ~L+m,

[M(ﬂ.]l&: B\ [‘QML] - i

a.lo]

(,0)

(_T—}%"‘ A sh - Lof®@  —$.6

b a .
Sin0 oS h

o bakion - dilabine




An important algebraic operation for complex numbers is conjugation:

Definition: Letz =x + iy . Then the conjugate of z,Z := x — i y. Geometrically this is a reflection in the
complex plane, across the x-axis. But the major uses of conjugations are algebraic:

Exercise2 Letz=x+ iy, w=u + ivbe complex numbers. Then

2a) |z|>=zZ.
b)Zw =Zw.
2¢) zw=0 ifand only if z=0orw=0.

z

1 1
2d) Ifz # 0 then — exists (i.e. the multiplicative inverse), in fact, — = —-.
z z |2‘



Geometric meaning of complex multiplication:

We use the polar form of complex numbers, which corresponds to polar coordinates in the R? coordinate
plane.

Letz=a + b i
Letr=yd" +b =|z|.
Then
a b :
zZ=r + I
Ja + b Ja + b ]
z=r (cos © + isin 0) o
where 0 is the polar coordinate angle. vb T o+ by
r
o)
I X
[}

Multiplication!! If
z=a+ bi=r (cos O + isin @)
w=c+di=p (cose + ising )

Then
zw= r(cos® + isin®)p (cos ¢ + isin ¢ )

zw =rp [(cosOcos ¢ -sinBsine) + i(cosOsin@ + sinOcos @) |
zw=rp [cos (64 @) + isin (06+ ¢)]

upshot: when you multiply two complex numbers, their moduli are multiplied, and their polar angles are
added!

Remark: Using Euler's formula that e'®=cos 0 + isin O the computation above may be expressed as:
If

z=re® andw=pe®
then
zw=re’epe”p=rpelee’q’=rpe’(e+q’) .



Exercise4- Play with complex multiplication algebraically (using the rectangular coordinates of complex
numbers) and geometrically (using their polar forms and the previous page).

(3—41)-(3+4i)=

N2 .
(I+07= Y (v+4<)
(]
(1+0)*=
v
LT «
[t
l' | 0 |
Y * (1-3)
} Q'S'U(L




Topics/concepts list for exam 2

4.1 vector spaces and sub vector spaces (subspaces) - abstract definitions.
realization of subspaces as null spaces or as spans of collections of vectors
how to check if a subset is a subspace.
examples such as polynomial vector spaces, matrix vector spaces, ", and subspaces of all of these.

4.2 Nul A and Col A for T'(x) = A x; Kernel T and Range T for general linear transformations 7 : V—W
how to find Nu/ A and Col A, and bases for each.

4.3 linearly independent/dependent sets; bases for vector spaces (including subspaces).

how to check whether the vectors in a set span a vector space.

how to check whether a set of vectors is linearly independent.

how to build up bases as growing sets of independent vectors, one vector at a time, until the set
spans.

how to cull dependent vectors from a spanning set, until it is an independent set.

4.4 every basis of n vectors for a vector space V' yields a coordinate system, via the coordinate
isomorphism with R” .

answering questions about span and linear independence for sets of vectors in /by using coordinates
with respect to a basis.

favorite examples include P, Mm < the polynomial and matrix spaces.

4.5 dimension of a vector space. basic facts about dimension, number of vectors required to span,
maximum number of independent vectors, dimensions of subspaces.

4.6 rank of a matrix. rank + nullity theorem.
connection to reduced row echelon form of the matrix.

how to find Row A, Nul AT
what Nul A, Row A, Col A, Nul AT have to do with the geometry of the transformation 7'(x) = 4 x.

4.9 Markov chains, stochastic and regular stochastic matrices, steady-state vector, google page rank ideas.

5.1-5.2 eigenvalues and eigenvectors. Finding eigenvalues via the characteristic equation
det(A4 -\ I) = 0 ; finding eigenspace bases.

5.3 Diagonalizable and non-diaglonalizable matrices. Algebraic consequences, e.g. computing large
powers of diagonalizable matrices.

5.4 Matrices of linear transformations, given domain and codomain bases; change of basis for matrix
transformations using "better bases".

Improved understanding of the transformation 7'(x) = 4 x in terms of R” basis made out of
eigenvectors, as compared to the standard basis.



5.5 Complex eigendata. Finding complex eigenvalues and eigenvectors, especially for 2 x 2 matrices;
rotation-dilation matrices.

computations '

fluency in the defintions and concepts

ability to create examples illustrating definitions and concepts

ability to discern whether statements are true or false, based on the material we've covered.
use of material from Chapters 1-3 that relates to Chapters 4-5.



