
Math 2270-002  Week 11 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  5.4-5.5, 6.1.  

Mon  Nov 5
       5.4-5.5  Brief intro to Matlab, continued discussion of change of variables to understand linear 
transformations, and introduction to complex eigenvalues and eigenvectors
     

Announcements: 

Warm-up Exercise:

 



Monday Review and look ahead:

We've been studying eigenvectors and eigenvalues for square matrices A, and the notion of 
diagonalizability, which we first understood in an algebraic sense.  

On Friday we talked about how linear transformations  T : V W are associated with matrix 
transformations from n m, once we choose bases   B = b1, b2, ... bn  for V,  C = c1, c2, ... cm  for 
W.   

This general framework is connected to matrix diagonalizability, and to more general notion of "similar 
matrices" when we have linear transformations from n to n expressed in one coordinate system, and 
wish to change to another one.  On Friday we understood how the algebraic identity for diagonalizable 
matrices

D = P 1 A P 

is related to this "change of coordinates" framework:  For a diagonalizable matrix A, the identity above is 
also a change of variables identity for understanding the matrix transformation T x = A x first given in 
standard coordinates; instead with respect to the eigenbasis for n, B = b1, b2, ... bn which constitutes 
the columns of P.  In fact,  the identity above can be read as

T  = P E  T E  PE  



So far, all of our eigendata has been real, but it's possible to have complex eigenvalues and eigenvectors as 
well, in which case we switch from considering real number scalars to considering complex number 
scalars and proceed as before.  We'll introduce those ideas today and tomorrow, in section 5.5.  

On Wednesday, I tentatively plan to begin Chapter 6 on "Orthogonality".  This Chapter will lead to 
amazing applications, but it begins with a review and extension of dot product ideas related to angles 
between vectors and orthogonality in n, that you learned about in multivariable Calculus for 2 and 3.  
There will be a relatively short homework assignment due next Wednesday, containing preliminary 
Chapter 6 material.

On Friday we have our second midterm exam, which will cover sections 4.1-4.6, 4.9 (and google page 
rank), 5.1-5.5.  I'll reserve a room for a problem session on Thursday, where we will go over a practice 
exam.  



For your extra credit homework problem, and because you want to familiarize yourself with Matlab for the
upcoming chapter as well, I'll demo Matlab.

Here are the two Matlab scripts I've created for this week. You can download these from either our public 
homework page or CANVAS.  Put them into a directory and open them from Matlab.  When you run the 
script with the big arrow at the top of your Matlab window all the commands will be executed.  You can 
modify the script as desired.

The file "matrixcomputations.m"    (The .m signifies matlab file.)  :

% some matlab commands for matrices...if you want more just use google.

% enter a matrix row by row, each row terminates with ";"
A=[1 2 3; 4 5 6]   %use spaces or commas to separate row entries
AA=[3 5 9;2 4 6];  %if you put a semi-colon at the end the computation
                   %isn't echoed in the command window.

%rref computes reduced row echelon form.  I named the result 
% with an equals sign and a name, so
%that it would be saved to my workspace after running the script

B=rref(A)

% augmenting a matrix, either by rows or columns:  first by row

b=[1,0,0]   %row vector .. 
C=[A;b]  % add a 3rd row to A, using b
          % use semicolons to separate rows
D=rref(C) % the 3 by 3 matrix D is invertible, since D is the identity
E=C^(-1)  % inverse matrix...everything is decimals

F= C*E  % this is how you multiply matrices!  should get identity

% augmenting a matrix by columns

g=[-1;3] % a column vector with two entries
H=[A,g] % augment A with the column g
K=rref(H) %reduce the augmented matrix to find solutions to Ax=g

% eigenvalues and eigenvectors

L=[2,1,0;0,2,0;0,0,3]
lambda=eig(L)  % eigenvalues
[M,N]=eig(L)  % eigenvalues in first diagonal matrix, 
              %eigenvectors in second matrix
              % note that this matrix is not diagonalizable



The file "PAC_team_rankings.m"

% PAC 12 Stochastic Matrix before past weekend
%    AZ  AZS CAL CU  OR  OSU STA UCLA USC UT WA  WAS
SMa=[ 0,  0, 1/3.,0, 1/3,.25, 0,   0,  0,  0, 0,  0;    %AZ
      0,  0,  0,  0,  0, .25, 0,   0  1/3, 0, 0,  0;    %AZS
      0,  0,  0,  0,  0, .25, 0,   0,  0,  0,.5,  0;    %CAL
      0, 1/3 ,0,  0,  0,  0,  0,  1/3, 0,  0, 0,  0;    %CU
      0,  0, 1/3  0,  0,  0,  0,   0,  0,  0,.5,  0;    %OR
      0,  0,  0, 1/3, 0,  0,  0,   0,  0,  0, 0,  0;    %OSU
      0, 1/3, 0,  0, 1/3, 0,  0,   0, 1/3, 0, 0,  0;    %STA
     1/3, 0, 1/3, 0,  0,  0,  0,   0,  0,  0, 0,  0;    %UCLA
     1/3, 0,  0, 1/3, 0,  0,  0,   0,  0,  0, 0,  1;    %USC
     1/3, 0,  0,  0,  0,  0, .5,  1/3,1/3, 0, 0,  0;    %UT
     0,  1/3, 0, 1/3, 0,  0,  0,  1/3, 0, .5, 0,  0;    %WA
     0,   0,  0,  0, 1/3,.25,.5,   0,  0, .5, 0,  0;]   %WAS
 
 %create a regular stochastic matrix with google fudge factor:
SMb=.15/12*ones(12,12)+.85*SMa

 % the columns of a large power of SMb should be essentially identical,
 % and are the equilibrium solution.  The entries can be used to rank
 % the Pac 12 teams, based on current records.
SMb^20



Returning to 5.4-5.5:
T  = P E  T E  PE  

Exercise 1   (To review change of basis)   Try to pick a better basis to understand the matrix transformation
T x = A x, even though the matrix A is not diagonalizable.  Compute M = P 1A P  or compute M directly,
to see if it really is a "better" matrix.

A =
4 4

1 0
  



5.5 Complex eigenvalues and eigenvectors.

We'll focus on 2 2 matrices, for simplicity.   In this case it will turn out that a matrix with real entries and
complex eigenvalues is always similar to a rotation-dilation matrix...

Definition  A matrix of the form A =
a b

b a
 is called a rotation-dilation matrix, because for 

r = a2 b2  we can rewrite A as

A = r  

a
r

b
r

b
r

a
r

 =  r 
cos sin

sin cos
 .

So the transformation T x = A x  rotates vectors by an angle  and then scales them by a factor of r.  (So 
A2 rotates by an angle 2  and scales by r2;  A3 rotates by an angle 3  and scales by r3, etc.  

Exercise 2)   Draw the transformation picture for

T
x1

x2
= 

1 1

1 1

x1

x2

and interpret this transformation as a rotation-dilation.  Overlay your diagram onto one picture:  How about
the transformation picture for T T = T2 ?

x1

3 2 1 0 1 2 3

x2

3

2

1

1

2

3



Exercise 3)  What are the eigenvalues of a rotation-dilation matrix A =
a b

b a
 ?   How do you think you

would go about finding the eigenvectors?



Tues Nov 6
  

  5.5  Complex eigendata
     

Announcements: 

Warm-up Exercise:



It is possible for a matrix A with real entries to be diagonalizable if one allows complex scalars and vectors,
even if it's not diagonalizable with real eigenvalues and eigenvectors.  You saw an example of that on a 
food for thought problem, if you weren't afraid.  We'll use a matrix today that we'll use later as well, in 
section 5.6, to study an interesting discrete dynamical system.  This matrix is not a rotation-dilation matrix, 
but it is similar to one, and that fact will help us understand the discrete dynamical system.

Exercise 1)  Let

B =
.9 .4

.1 .9
Find the (complex) eigenvalues and eigenvectors for B.





General facts we saw illustrated in the example, about complex eigenvalues and eigenvectors:  Let A be a 
matrix with real entries, and let 

A v =  v  

with = a  b i, v = u i w complex,  (a, b , u, w n .  Then we write

Re  = a,   Im  = b

Re v = u,      Im v = w.

So, the equation A v =  v expands as

A u  i w  = a b i u i w .

It will always be true then that the conjugate   =  a  b i  is also an eigenvalue, and the conjugate vector  
v = u i w  will be a corresponding eigenvector, because it will satisfy

A u  i w  = a b i u i w  

Exercise 4  Verify that if the first eigenvector equation holds, then

A u = a u  b w 
A w = b u  a w 

Then check that these equalities automatically make the second conjugate eigenvector equation true as well.



Theorem   Let  A be a real 2 2 matrix with complex eigenvalues.  Then A is similar to a rotation-dilation 
matrix.

proof:  Let a complex eigenvalue and eigenvector be given by  = a  b i, v = u i w complex,  (
a, b , u, w n   Choose

P =  Re v    Im v  = u  w   

(One can check that u, w  is automatically independent.)  Then, using the equations of Exercise 4, we 
mimic what we did for diagonalizable matrices...

A u  w   = a u  b w, b u  a w   

=  u  w   
a b

b a
  .

A P = P 
a b

b a
  

P 1 A P =  
a b

b a
.

(The matrix on the right is a rotation-dilation matrix  ... nobody ever said what the sign of b was.   :-) )



It's a mess, but one can carry out the procedure of the theorem,  for the matrix B in exercise 1, 

B =
.9 .4

.1 .9

using = .9 .2 i,  v = 
2 i

1
= 

0

1
i

2

0
   , one gets

P =  Re v    Im v =
0 2

1 0
,               P 1 =

1
2

0 2

1 0
 

P 1B P = 
1
2

0 2

1 0
 

.9 .4

.1 .9

0 2

1 0
 

P 1B P =
.9 .2

.2 .9
 = .85

.9

.85

.2

.85

.2

.85

.9

.85

  

P 1B P = r 
cos sin

sin cos
 .

for r = .85 .92   ,  = arctan
2
9

.22 radians.

Application on next page, to browse through...







Example:  From the algebra yesterday, and after a fair amount of work,  For the dynamical system

gk 1

hk 1
 =  

.9 .4

.1 .9

gk
hk

and with 
g0

h0
=  

100

0
,  one can calculate and understand the spiral picture...

gk
hk

 =
.9 .4

.1 .9

k 
100

0
 =  = .92k

100 cos k 

50 sin k 
 

 .22 radians.



yipes!  

For r = .85 .92   ,  = arctan
2
9

.22 radians.

B = r P
cos sin

sin cos
P 1 

B2 = r2 P
cos 2 sin 2 

sin 2 cos 2 
P 1

Bn = rn P 
cos n sin n 

sin n cos n 
P 1 

Bn
100

0
 = .92n 

0 2

1 0
 

cos n sin n 

sin n cos n 
1
2

0 2

1 0

100

0
  

.92n
0 2

1 0
 

cos n sin n 

sin n cos n 

0

50
 

= .92n
0 2

1 0

50 sin n

50 cos n

= .92n
100 cos n

50 sin n



Chapter 6 is about orthogonality and related topics.  We'll spend maybe two weeks plus a day in this 
chapter.  The ideas we develop start with the dot product, which we've been using algebraically to compute
individual entries in matrix products, but which has important geometric meaning.  By the end of the 
Chapter we will see applications to statistics,  discuss generalizations of the dot product, "inner products", 
which can apply to function vector spaces and which lie at the heart of physics applications that use 
Fourier series, and more recent applications such as image and audio compression, see e.g.

https://en.wikipedia.org/wiki/Discrete_cosine_transform
     

Wed Nov 7
       6.1-6.2   dot product, length, orthogonality, projection onto the span of a single vector.

Announcements: 

Warm-up Exercise:



Recall, for any two vectors v, w n , the dot product v w is the scalar computed by the definition

v w  
i = 1

n

vi wi .

We don't care if v, w are row vectors or column vectors, or one of each, for the dot product.

We've been using the dot product algebraically to compute entries of matrix products A B, since 

entryi j A B  = rowi A  colj B  = rowi A  colj B  .

The algebra for dot products is a mostly a special case of what we already know for matrices, but worth 
writing down and double-checking, so we're ready to use it in the rest of Chapters 6 and 7.

Exercise 1  Check why

1a)    dot product is commutative:         
 v w  = w v .

1b)  dot product distributes over addition:       
u v w = u w  v w  

u v w = u v  u w 

1c)  for k , 
k v  w = k v w = v  k w .

1d)  dot product distributes over linear combinations:

v  c1 w1 c2 w2 ...   ck wk = c1 v  w1   c2 v w2   ...  ck v wk . 



v w  
i = 1

n

vi wi 

1e)  

v v 0   for each v 0    (and 0 0 = 0. )

Chapter 6 is about topics related to the geometry of the dot product.  It begins now, with definitions and 
consequences that generalize what you learned for 2, 3 in your multivariable Calculus class, to n .

2)   Geometry of the dot product, stage 1.  We'll add examples with pictures as we go throught these 
definitions.

2a)   For v n  we define the length or norm or magnitude of v by

v   
i = 1

n

vi
2  = v v

1
2  .

Notice that the length of a scalar multiple of a vector is what you'd expect:

  t v  = t v t v
1
2 = t2 v  v

1
2

 =  t v  .

Also notice that v 0 unless v = 0.

2b)  The distance between points (with position vectors) P, Q is defined to be Q P   (or P Q ).



2c)  For  v, w n, we define v to be orthogonal  (or perpendicular) to w  if and only if
v  w = 0.

And in this case we write v w.

Note:  In 2 or 3 and in your multivariable calculus class, this definition was a special case of the identity

v w = v  w  cos

where  is the angle between v, w.  (Because cos = 0 when =
2

.  ) That identity followed from the 

law of cosines, although you probably don't recall the details.  In this class we'll actually use the identity  
above to define angles between vectors, in n. (And in about two weeks, we can use it to define angles 
between functions, in inner product function spaces.) 

2d)  The n reason for defining orthogonality as in 2c is that the Pythagorean Theorem holds for the 
triangle with displacement vectors  v, w and hypotenuse v w if and only if v w = 0.    Check!



2e)   A vector u n is called a unit vector if and only if  u = 1.  

2f)  If v n  then the unit vector in the direction of v is given by 

u =
1
v v.  

2g)  Projection onto a line.  Let v n be a non-zero vector, let L = span v  be a line through the origin.  
Then for any x n the projection of x onto L is defined by the formula

projL x  x u  u     

for u the unit vector in the direction of v, u =
1
v v.   Equivalently

projL x  
x v  
v 2 v .

Then projLx is the (position vector of) nearest point on L to (the point with position vector)  x .   To check 
why this is true use the diagram below.   Show that z x x u u is perpendicular to u, so to any 
vector in span u .  Then use the Pythagorean theorem to prove the claim.



2h)  Refer to the same diagram as in 2g, which is an n picture.  Using the Pythagorean triangle with 
edges x u u, z, x we have

x u u 2  z 2 =  x 2.

Define the angle  between v and w the same way we would in 2, namely

cos = 
x u  
x .

Notice that because of the Pythagorean identity above, 1 cos  1 , with cos = 1 if and only if
x u u = x   and cos = 1 if and only if x u u = x .  So there is a unique  with 0  for 

whic the cos  equation can hold.  Substituting u =
v
v

 gives the familiar formulas that you learned in 

multivariable Calculus for 2, 3, which now holds in n.

cos =
x v

v  

x =  
x v  
x v , i.e.

x v  = x v  cos   



3)  Summary exercise    In 2, let L = span
2

1
.  Find projL

3

4
.   Illustrate.  Verify the Pythagorean 

Theorem for projL
3

4
, "z"  and hypotenuse 

3

4
.  


