Math 2270-002 Week 11 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes cover material in 5.4-5.5, 6.1.

Mon Nov 5
« 5.4-5.5 Brief intro to Matlab, continued discussion of change of variables to understand linear
transformations, and introduction to complex eigenvalues and eigenvectors

Announcements:

Warm-up Exercise:



Monday Review and look ahead:

We've been studying eigenvectors and eigenvalues for square matrices 4, and the notion of
diagonalizability, which we first understood in an algebraic sense.

On Friday we talked about how linear transformations 7 : V'— W are associated with matrix
transformations from R” — R™, once we choose bases B = {b b b } forV, C= {
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This general framework is connected to matrix diagonalizability, and to more general notion of "similar
matrices" when we have linear transformations from R” to [R” expressed in one coordinate system, and

wish to change to another one. On Friday we understood how the algebraic identity for diagonalizable
matrices

D=P ' 4P

is related to this "change of coordinates" framework: For a diagonalizable matrix A4, the identity above is
also a change of variables identity for understanding the matrix transformation 7'(x) = A4 x first given in
standard coordinates; instead with respect to the eigenbasis for R”, B= { Ql , QZ, Qn }which constitutes
the columns of P. In fact, the identity above can be read as
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So far, all of our eigendata has been real, but it's possible to have complex eigenvalues and eigenvectors as
well, in which case we switch from considering real number scalars to considering complex number
scalars and proceed as before. We'll introduce those ideas today and tomorrow, in section 5.5.

On Wednesday, I tentatively plan to begin Chapter 6 on "Orthogonality". This Chapter will lead to
amazing applications, but it begins with a review and extension of dot product ideas related to angles
between vectors and orthogonality in R”, that you learned about in multivariable Calculus for R? and [R3.
There will be a relatively short homework assignment due next Wednesday, containing preliminary
Chapter 6 material.

On Friday we have our second midterm exam, which will cover sections 4.1-4.6, 4.9 (and google page
rank), 5.1-5.5. T'll reserve a room for a problem session on Thursday, where we will go over a practice
exam.



For your extra credit homework problem, and because you want to familiarize yourself with Matlab for the
upcoming chapter as well, I'll demo Matlab.

Here are the two Matlab scripts I've created for this week. You can download these from either our public
homework page or CANVAS. Put them into a directory and open them from Matlab. When you run the
script with the big arrow at the top of your Matlab window all the commands will be executed. You can
modify the script as desired.

The file "matrixcomputations.m" (The .m signifies matlab file.) :
% some matlab commands for matrices...if you want more just use google.

% enter a matrix row by row, each row terminates with ";"

A=[123;456] %usespaces or commas to separate row entries

AA=[359;246]; %if you put a semi-colon at the end the computation
%isn't echoed in the command window.

Y%rref computes reduced row echelon form. I named the result
% with an equals sign and a name, so
Y%ithat it would be saved to my workspace after running the script

B=rref(A)
% augmenting a matrix, either by rows or columns: first by row

b=[1,0,0] %row vector ..
C=[A;b] % add a 3rd row to A, using b
% use semicolons to separate rows
D=rref(C) % the 3 by 3 matrix D is invertible, since D is the identity
E=C"(-1) % inverse matrix...everything is decimals

F= C*E % this is how you multiply matrices! should get identity
% augmenting a matrix by columns

g=[-1;3] % a column vector with two entries
H=[A,g] % augment A with the column g
K=rref(H) %reduce the augmented matrix to find solutions to Ax=g

% eigenvalues and eigenvectors

L=[2,1,0;0,2,0;0,0,3]

lambda=eig(L) % eigenvalues

[M,N]=eig(L) % eigenvalues in first diagonal matrix,
Y%eigenvectors in second matrix
% note that this matrix is not diagonalizable



The file "PAC_team rankings.m"

% PAC 12 Stochastic Matrix before past weekend

AZ AZS CALCU OR OSU STA UCLA USC UT WA WAS

%

SMa=[ 0, 0, 1/3.,0, 1/3,.25,0, 0, 0, 0,0, 0; %AZ
0, 0,0, 0,0,.250, 01/3,0,0, 0; %AZS
0,0, 0,0, 0,.25,0, 0, 0, 0,5, 0; %CAL
0,1/73.,0, 0, 0, 0, 0, 1/3,0, 0,0, 0; %CU
0, 0,13 0, 0, 0, 0, 0, 0, 0,.5, 0; %OR
0, 0, 0,1/3,0, 0, 0, 0, 0, 0,0, 0; %OSU
0,1/3,0, 0,1/3,0, 0, 0,1/3,0,0, 0; %STA
1/3,0,1/3,0, 0, 0, 0, 0, 0, 0,0, 0; %UCLA
13,0, 0,1/3,0, 0, 0, 0, 0, 0,0, 1; %USC
13,0, 0, 0, 0, 0,.5, 1/3,1/3,0,0, 0; %UT
0, 1/3,0,1/3,0, 0, 0, 1/3,0,.5,0, 0; %WA
0, 0,0, 0,1/3,.25,.5, 0, 0,.5,0, 0;] %WAS

Y%create a regular stochastic matrix with google fudge factor:

SMb=.15/12*ones(12,12)+.85*SMa

% the columns of a large power of SMb should be essentially identical,
% and are the equilibrium solution. The entries can be used to rank

% the Pac 12 teams, based on current records.

SMb”20



Returning to 5.4-5.5:
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Exercise 1 (To review change of basis) Try to pick a better basis to understand the matrix transformation
T(x) = A x, even though the matrix A4 is not diagonalizable. Compute M= P-1A P or compute M directly,
to see if it really is a "better" matrix.

4 4
-1 0




5.5 Complex eigenvalues and eigenvectors.

We'll focus on 2 x 2 matrices, for simplicity. In this case it will turn out that a matrix with real entries and
complex eigenvalues is always similar to a rotation-dilation matrix...

a -b
Definition A matrix of the form 4 =

r=4 a2 + b2 we can rewrite A as

\ is called a rotation-dilation matrix, because for
a

a b

rooor cos(0) -sin(0)
A=r =r

b a sin(0) cos(0)

roor

So the transformation 7'(x) = 4 x rotates vectors by an angle 0 and then scales them by a factor of 7. (So

A? rotates by an angle 2 6 and scales by rz; A rotates by an angle 3 6 and scales by r3, etc.

Exercise 2) Draw the transformation picture for

and interpret this transformation as a rotation-dilation. Overlay your diagram onto one picture: How about
the transformation picture for 7o 7' = %9




a -b

Exercise 3) What are the eigenvalues of a rotation-dilation matrix 4 = ? How do you think you

a
would go about finding the eigenvectors?



Tues Nov 6

5.5 Complex eigendata

Announcements:

Warm-up Exercise:



It is possible for a matrix 4 with real entries to be diagonalizable if one allows complex scalars and vectors,
even if it's not diagonalizable with real eigenvalues and eigenvectors. You saw an example of that on a
food for thought problem, if you weren't afraid. We'll use a matrix today that we'll use later as well, in
section 5.6, to study an interesting discrete dynamical system. This matrix is not a rotation-dilation matrix,
but it is similar to one, and that fact will help us understand the discrete dynamical system.

Exercise 1) Let
9 -4

d 9
Find the (complex) eigenvalues and eigenvectors for B.

B:







General facts we saw illustrated in the example, about complex eigenvalues and eigenvectors: Let 4 be a
matrix with real entries, and let

Av=>Ay
withA=a + bi,y=u+ iwcomplex, (a,b € R,u, w € R"). Then we write
ReA=a, ImA=5b

Rey=u, Imy=w.

So, the equation 4 y = A y expands as
Aw+iw)=(a+bi)(u+iw).

It will always be true then that the conjugate A = a — b i is also an eigenvalue, and the conjugate vector
v=u-iw will be a corresponding eigenvector, because it will satisfy

A(u-iw)=(a-bi)(u-iw)

Exercise 4 Verify that if the first eigenvector equation holds, then

Then check that these equalities automatically make the second conjugate eigenvector equation true as well.



Theorem Let 4 beareal 2 x 2 matrix with complex eigenvalues. Then A is similar to a rotation-dilation
matrix.

proof: Let a complex eigenvalue and eigenvector be given by A =a + b i,y=u + i w complex, (
a,b € R,u,w € R*) Choose

P=[Rey Imy|=[u w]

(One can check that {u, w} 1s automatically independent.) Then, using the equations of Exercise 4, we
mimic what we did for diagonalizable matrices...

a b
“law ] -b a

a b
AP=P

-b a
_1 a b
P AP=

-b a

(The matrix on the right is a rotation-dilation matrix ... nobody ever said what the sign of b was. :-))



It's a mess, but one can carry out the procedure of the theorem, for the matrix B in exercise 1,

9 -4
B:
19
-2 0 -2
usingA=.9-214, = | = : +i 0 , one gets
0 -2 4 1] 0 2
P=[Rey Imy]= , P =—
1 0 21-10
. 10 2019 -41]0 -2
P BP=—
21-101((.1 9 1 0
9 2
9 -2 \ .85 NEX
-1
P BP= =, .85
9 2 9
\J -85 \J -85
_ cos(0) -sin(0)
P'BP=r

sin(0) cos(0)

2
forr=,.85 = .92 ,9=arctan(3] =~ .22 radians.

Application on next page, to browse through...



7.5 Complex Eigenvalues 343

72. Use the method outlined in Exercise 70 to check for a. Are the column vectors of the matrices A — A1/ and

which values of the constants a, b, and ¢ the matrix A — Ay I eigenvectors of A? Explain. Does this work
L a b for other 2 x 2 matrices? What about diagonalizable
A= {0 0 c| is diagonalizable. n x n matrices with two distinct eigenvalues, such
0 0 1 as projections or reflections? (Hint: Exercise 70 is
helpful.)
73. Prove the Cayley-Hamilton theorem, fy(A) = O, for b. Are the column vectors of

diagonalizable matrices A. See Exercise 7.3.54.

]
ae!

i with eigenvalues A; = Sand A = —1(see Examiple 1).

0 A

74. In both parts of this problem, consider the matrix A [Al 0 ]

2
3
eigenvectors of A? Explain.
/
W rtean Algabre e Avpphics fos
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:A Complex Eigenvalues

Imagine that you are diabetic and have to pay close attention to how your body
metabolizes glucose. After you eat a heavy meal, the glucose concentration will
reach a peak, and then it will slowly return to the fasting level. Certain hormones
help regulate the glucose metabolism, especially the hormone insulin. (Compare with
Exercise 7.1.52.) Let g(z) be the excess glucose concentration in your blood, usually
measured in milligrams of glucose per 100 milliliters of blood. (Excess means that
we measure how much the glucose concentration deviates from the fasting level.) A
negative value of g (1) indicates that the glucose concentration is below fasting level
at time 1. Let/1(t) be the excess insulin concentration in your blood. Researchers have
developed mathematical models for the glucose regulatory system. The following is
one such model, in slightly simplified (linearized) form.

gt + 1) =ag(t) — bh(t)
Wit +1)=cgt) +dh()

(These formulas apply between meals; obviously, the system is disturbed during and
right after a meal.)

In these formulas, a, b, ¢, and d are positive constants; constants a and d will
be less than 1. The term —b/(t) expresses the fact that insulin helps your body
absorb glucose, and the term cg(#) represents the fact that the glucose in your blood
stimulates the pancreas to secrete insulin.

For your system, the equations might be

gt +1) =0.9g(t) —0.4h(t)
h(t +1) =0.1g(t) + 0.9A(z),

with initial values g(0) = 100 and 1(0) = 0, after a heavy meal. Here, time ¢ is
measured in hours.

Afterone hour, the values willbe g(1) = 90 and #(1) = 10. Some of the glucose
has been absorbed, and the excess glucose has stimulated the pancreas to produce
10 extra units of insulin.

The rounded values of g(¢) and /1(¢) in the following table give you some sense
for the evolution of this dynamical system.




344 CHAPTER 7 Eigenvalues and Eigenvectors
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g(r) 100 90 77 62.1 463 306 157 23 93 29 1.6 95
h(t) 0 10 18 239 277 296 297 283 257 -2 —8.3 03

We can “connect the dots” to sketch a rough trajectory, visualizing the long-term
behavior. See Figure 1.

h(r)

o+ Si=22

Figure 1

We see that after 7 hours the excess glucose is almost gone, but now there are ]
about 30 units of excess insulin in the system. Since this excess insulin helps to '
reduce glucose further, the glucose concentration will now fall below fasting level, -
reaching about —30 after 15 hours. (You will feel awfully hungry by now.) Under

normal circumstances, you would have taken another meal in the meantime, of

course, but let’s consider the case of (voluntary or involuntary) fasting.
We leave it to the reader to explain the concentrations after 22 and 29 hours, in
terms of how glucose and insulin concentrations influence each other, according to
our model. The spiraling trajectory indicates an oscillatory behavior of the system: g
Both glucose and insulin levels will swing back and forth around the fasting level,
like a damped pendulum. Both concentrations will approach the fasting level (thus =
the name). )
Another way to visualize this oscillatory behavior is to graph the functions g(r)
and /(1) against time, using the values from our table. See Figure 2.
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Example: From the algebra yesterday, and after a fair amount of work, For the dynamical system

Ek+1 9 -4 &
h, . 19 h,
£o 100
and with 5 = , one can calculate and understand the spiral picture...
0

k
9 -4

d 9

100
0

100 cos (k£ 0)
50 sin(k0)

2k

0 = .22 radians.



yipes!

2
Forr=,.85 = .92 ,0=arctan [ 9 j = .22 radians.

B'=/"P p!
sin(n0) cos(n0)
100 0 -2 ][ cos(n8) -sin(n®) |1 [ 0 2][ 100
B’ =.92 -
0 10 sin(n@) cos(n@) |2 -1 0] O
- 0 -2 ][ cos(n8) -sin(n0) |[ 0
. 10 sin(n0) cos(n0) »‘50
0 -2 ][ 50sin(n6)
=.92"
1 0 -50 cos(n0)
| 100 cos(n6)

50 sin(n0)




Chapter 6 is about orthogonality and related topics. We'll spend maybe two weeks plus a day in this
chapter. The ideas we develop start with the dot product, which we've been using algebraically to compute
individual entries in matrix products, but which has important geometric meaning. By the end of the
Chapter we will see applications to statistics, discuss generalizations of the dot product, "inner products",
which can apply to function vector spaces and which lie at the heart of physics applications that use
Fourier series, and more recent applications such as image and audio compression, see e.g.
https://en.wikipedia.org/wiki/Discrete cosine transform

Wed Nov 7
+ 6.1-6.2 dot product, length, orthogonality, projection onto the span of a single vector.

Announcements:

Warm-up Exercise:



Recall, for any two vectors vy, w € R” , the dot product v « w is the scalar computed by the definition
n

pew= Dvw
i

i=1
We don't care if v, w are row vectors or column vectors, or one of each, for the dot product.

We've been using the dot product algebraically to compute entries of matrix products 4 B, since

entry, [AB]= [rowl.A] [colj B]Z [rowl.A] . [coljB].

The algebra for dot products is a mostly a special case of what we already know for matrices, but worth
writing down and double-checking, so we're ready to use it in the rest of Chapters 6 and 7.

Exercise 1 Check why

la) dot product is commutative:

1b) dot product distributes over addition:
(ut+y)ew=u-w+y-w

lc) fork € R,



=

<

vey>0 foreachy+0 (and0-0=0.)

Chapter 6 is about topics related to the geometry of the dot product. It begins now, with definitions and
consequences that generalize what you learned for R?, R3 in your multivariable Calculus class, to R” .

2) Geometry of the dot product, stage 1. We'll add examples with pictures as we go throught these
definitions.

2a) Fory € R" we define the length or norm or magnitude of y by

7 1
Iyl =/ le = (x-y)?.

Notice that the length of a scalar multiple of a vector is what you'd expect:
1
2 _(2 2
el = (o) ® = (o)™ =1l

Also notice that [|p|| > 0 unless y= 0.

2b) The distance between points (with position vectors) P, Q is defined to be ||Q@ — P|| (or |2 — 2]|).



2¢) For v, w € R”, we define v to be orthogonal (or perpendicular) to w if and only if
vew=0.
And in this case we writey | w.

Note: In R? or R3 and in your multivariable calculus class, this definition was a special case of the identity

vew=|lz|| |lw]| cos(6)
where 0 is the angle between v, w. (Because cos(0) = 0 when 6 = % ) That identity followed from the

law of cosines, although you probably don't recall the details. In this class we'll actually use the identity
above to define angles between vectors, in R”?. (And in about two weeks, we can use it to define angles
between functions, in inner product function spaces.)

2d) The R” reason for defining orthogonality as in 2¢ is that the Pythagorean Theorem holds for the
triangle with displacement vectors y, w and hypotenuse y + w if and only if y e w = 0. Check!

—_—
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2e) A vector u € R” is called a unit vector if and only if ||u|| = 1.

2f) Ify € R* then the unit vector in the direction of v is given by
1

u=——-Y
(4]

2g) Projection onto a line. Lety € R” be a non-zero vector, let L = span{y} be a line through the origin.
Then for any x € [R” the projection of x onto L is defined by the formula

proj, X = (x-u)u

for u the unit vector in the direction of v, u = v. Equivalently

||

) (x-v)
projp X i= ——"5"¥.
|||

Then proj,x is the (position vector of) nearest point on L to (the point with position vector) x. To check

why this is true use the diagram below. Show that z := x - (x * u)u 1s perpendicular to u, so to any
vector in span{u}. Then use the Pythagorean theorem to prove the claim.

D
+

-
2
30 = (- ®WR) & = (ZR)-E =0
p}
z
L



2h) Refer to the same diagram as in 2g, which is an R” picture. Using the Pythagorean triangle with
edges (x*u)u, z, x we have

lxewu ||* + )zl =lxi?.

Define the angle 6 between y and w the same way we would in k2, namely

Notice that because of the Pythagorean identity above, -1 < cos(0) < 1, with cos(6) =1 if and only if

(x+w)u=x andcos(0) =-1ifand only if (x * )u = -x. So there is a unique 6 with 0 < 6 < 7 for
v

Iv]

multivariable Calculus for R2?, R3, which now holds in R”.

whic the cos 0 equation can hold. Substituting u = gives the familiar formulas that you learned in

COS

_ (ﬁ ||§||) _ (x-y)
(6) ] TR

(x =) =[xl [|2]l cos (6)

P)
«




2 3
3) Summary exercise InR2,letL = spanl . Find proj, 4l [lustrate. Verify the Pythagorean
3 3 ]
Theorem for proj, Al "z" and hypotenuse

(2,1)




