
Math 2270-002  Week 10 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  4.9 (google page rank), 5.1-5.4  

Mon Oct 29
       4.9-5.1  google page rank as the stationary vector for a Markov Chain;  introduction to eigenvectors 
and eigenvalues
     

Announcements: 

Warm-up Exercise:

 



Monday Review!

We've been studying section 4.9 Markov Chains, which are discrete dynamical systems with initial state 
x0

n, and with transition matrix P, so that

xk = P xk 1,    k = 1, 2, 3, ....

xk = Pk x0  k .

For a Markov Chain the transition matrix P is required to be stochastic, i.e. each column of P is a
probability vector having non-negative components which sum to 1.  For a Markov Chain we also usually 
take the initial vector x0 to be a probability vector, in which case the successive vectors xk are as well.  

A stochastic matrix P is called regular if some power of P has all positive entries (as opposed to just non-
negative).

A probability vector q is called a steady state vector for a Markov Chain with transition matrix P if 

P q = q. 
(Notice that in this case, if x0 = q then each xk = q as well.)

Long-time behavior of Markov chains:

Theorem  (Perron-Frobenius Theorem)  If P is an n n regular stochastic matrix, then P has a unique 
steady state vector q.  Furthermore, if x0 is any initial state (probability vector) for the Markov chain

xk 1 = P xk                       k = 0, 1, 2,....  

then the Markov chain xk  converges to the steady state q as k .   In particular, since the jth column 

of Pk is Pk ej and ej is an admissable initial state probability vector, each column of Pk converges to q.

On Friday we discussed two examples of Markov Chains from section 4.9, and then moved into the 
google page rank notes....



The Giving Game: Google Page Rank

University of Utah Teachers’ Math Circle

Nick Korevaar

March 24, 2009

Stage 1: The Game

Imagine a game in which you repeatedly distribute something desirable to your friends,
according to a fixed template. For example, maybe you’re giving away “play–doh” or pennies!
(Or it could be you’re a web site, and you’re voting for the sites you link to. Or maybe,
you’re a football team, and you’re voting for yourself, along with any teams that have beaten
you.)

Let’s play a small–sized game. Maybe there are four friends in your group, and at each
stage you split your material into equal sized lumps, and pass it along to your friends,
according to this template:

2

1 3

4

The question at the heart of the basic Google page rank algorithm is: in a voting game
like this, with billions of linked web sites and some initial vote distribution, does the way
the votes are distributed settle down in the limit? If so, sites with more limiting votes must
ultimately be receiving a lot of votes, so must be considered important by a lot of sites, or
at least by sites which themselves are receiving a lot of votes. Let’s play!

1. Decide on your initial material allocations. I recommend giving it all to one person
at the start, even though that doesn’t seem fair. If you’re using pennies, 33 is a
nice number for this template. At each stage, split your current amount into equal
portions and distribute it to your friends, according to the template above. If you have
remainder pennies, distribute them randomly. Play the game many (20?) times, and
see what ultimately happens to the amounts of material each person controls. Compare
results from different groups, with different initial allocations.

2. While you’re playing the giving game, figure out a way to model and explain this
process algebraically!
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Play the google game!  

Transition matrix for problem 1, to a large power:
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Stage 2: Modeling the game algebraically

The game we just played is an example of a discrete dynamical system, with constant tran-
sition matrix. Let the initial fraction of play dough distributed to the four players be given
by

x0 =

⎡

⎢

⎢

⎣

x0,1

x0,2

x0,3

x0,4

⎤

⎥

⎥

⎦

,
4
∑

i=1

x0,i = 1

Then for our game template on page 1, we get the fractions at later stages by

⎡

⎢

⎢

⎣

xk+1,1

xk+1,2

xk+1,3

xk+1,4

⎤

⎥

⎥

⎦

= xk,1

⎡

⎢

⎢

⎣

0
0.5
0.5
0

⎤

⎥

⎥

⎦

+ xk,2

⎡

⎢

⎢

⎣

0
0
1
0

⎤

⎥

⎥

⎦

+ xk,3

⎡

⎢

⎢

⎣

0
0
0
1

⎤

⎥

⎥

⎦

+ xk,4

⎡

⎢

⎢

⎣

0.5
0

0.5
0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xk+1,1

xk+1,2

xk+1,3

xk+1,4

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

0 0 0 0.5
0.5 0 0 0
0.5 1 0 0.5
0 0 1 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

xk,1

xk,2

xk,3

xk,4

⎤

⎥

⎥

⎦

So in matrix form, xk = Akx0 for the transition matrix A given above.

3. Compute a large power of A. What do you notice, and how is this related to the page
1 experiment?

4. The limiting “fractions” in this problem really are fractions (and not irrational num-
bers). What are they? Is there a matrix equation you could solve to find them, for
this small problem? Hint: the limiting fractions should remain fixed when you play
the game.

5. Not all giving games have happy endings. What happens for the following templates?

(a)

2

1 3

4

2
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(b)

2

1 3

4

(c)

2 5

1 3

4 6

(d)

2 5

1 3

4 6

Here’s what separates good giving–game templates, like the page 1 example, from the
bad examples 5a,b,c,d.

Definition: A square matrix S is called stochastic if all its entries are positive, and the
entries in each column add up to exactly one.

Definition: A square matrix A is almost stochastic if all its entries are non–negative, the
entries in each column add up to one, and if there is a positive power k so that Ak is
stochastic.

6. What do these definitions mean vis-à-vis play–doh distribution? Hint: if it all starts
at position j, then the inital fraction vector x0 = ej, i.e. has a 1 in position j and
zeroes elsewhere. After k steps, the material is distributed according to Akej, which is
the jth column of Ak.
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Stage 3: Theoretical basis for Google page rank

Theorem. (Perron–Frobenius) Let A be almost stochastic. Let x0 be any “fraction vector”
i.e. all its entries are non–negative and their sum is one. Then the discrete dynamical system

xk = Akx0

has a unique limiting fraction vector z, and each entry of z is positive. Furthermore, the
matrix powers Ak converge to a limit matrix, each of whose columns are equal to z.

proof: Let A = [aij ] be almost stochastic. We know, by “conservation of play–doh”, that
if v is a fraction vector, then so is Av. As a warm–up for the full proof of the P.F. theorem,
let’s check this fact algebraically:

n
∑

i=1

(Av)i =
n
∑

i=1

n
∑

j=1

aijvj =
n
∑

j=1

n
∑

i=1

aijvj

=
n
∑

j=1

vj

(

n
∑

i=1

aij

)

=
n
∑

j=1

vj = 1

Thus as long as x0 is a fraction vector, so is each iterate ANx0.
Since A is almost stochastic, there is a power l so that S = Al is stochastic. For any

(large) N , write N = kl + r, where N/l = k with remainder r, 0 ≤ r < l. Then

ANx0 = Akl+rx0 =
(

Al
)k

Arx0 = SkArx0

As N → ∞ so does k, and there are only l choices for Arx0, 0 ≤ r ≤ l− 1. Thus if we prove
the P.F. theorem for stochastic matrices S, i.e. Sky0 has a unique limit independent of y0,
then the more general result for almost stochastic A follows.

So let S = [sij] be an n×n stochastic matrix, with each sij ≥ ε > 0. Let 1 be the matrix
for which each entry is 1. Then we may write:

B = S − ε1; S = B + ε1. (1)

Here B = [bij ] has non–negative entries, and each column of B sums to

1 − nε := µ < 1. (2)

We prove the P.F. theorem in a way which reflects your page 1 experiment: we’ll show
that whenever v and w are fraction vectors, then Sv and Sw are geometrically closer to each
other than were v and w. Precisely, our “metric” for measuring the distance “d” between
two fraction vectors is

d(v,w) :=
n
∑

i=1

|vi − wi|. (3)

Here’s the magic: if v is any fraction vector, then for the matrix 1, of ones,

(1v)i =
n
∑

j=1

1vj = 1.
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So if v,w are both fraction vectors, then 1v = 1w. Using matrix and vector algebra, we
compute using equations (1), (2):

Sv − Sw = (B + ε1)v − (B + ε1)w (4)

= B(v −w)

So by equation (3),

d(Sv, Sw) =
n
∑

i=1

∣

∣

∣

∣

∣

n
∑

j=1

bij(vj − wj)

∣

∣

∣

∣

∣

(5)

≤
n
∑

i=1

n
∑

j=1

bij |vj − wj|

=
n
∑

j=1

|vj − wj|
n
∑

i=1

bij

= µ
n
∑

j=1

|vj − wj |

= µd(v,w)

Iterating inequality (5) yields

d(Skv, Skw) ≤ µkd(v,w). (6)

Since fraction vectors have non–negative entries which sum to 1, the greatest distance be-
tween any two fraction vectors is 2:

d(v,w) =
n
∑

i=1

|vi − wi] ≤
n
∑

i=1

vi + wi = 2

So, no matter what different initial fraction vectors experimenters begin with, after k iter-
ations the resulting fraction vectors are within 2µk of each other, and by choosing k large
enough, we can deduce the existence of, and estimate the common limit z with as much
precision as desired. Furthermore, if all initial material is allotted to node j, then the initial
fraction vector ej has a 1 in position j and zeroes elsewhere. Skej, (or ANej) is on one hand
the jth column of Sk (or AN), but on the other hand is converging to z. So each column of
the limit matrix for Sk and AN equals z. Finally, if x0 is any initial fraction vector, then
S(Skx0) = Sk+1(x0) is converging to S(z) and also to z, so S(z) = z (and Az = z). Since
the entries of z are non–negative (and sum to 1) and the entries of S are all positive, the
entries of Sz (= z) are all positive. ¨
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Stage 4: The Google fudge factor

Sergey Brin and Larry Page realized that the world wide web is not almost stochastic.
However, in addition to realizing that the Perron–Frobenius theorem was potentially useful
for ranking URLs, they figured out a simple way to guarantee stochasticity—the “Google
fudge factor.”

Rather than using the voting matrix A described in the previous stages, they take a
combination of A with the matrix of 1s we called 1. For (Brin an Pages’ choice of) ε = .15
and n equal the number of nodes, consider the Google matrix

G = (1 − ε)A +
ε

n
1.

(See [Austin, 2008]).
If A is almost stochastic, then each column of G also sums to 1 and each entry is at least

ε/n. This G is stochastic! In other words, if you use this transition matrix everyone gets a
piece of your play–doh, but you still get to give more to your friends.

7. Consider the giving game from 5c. Its transition matrix

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 .5 0 0
.5 0 0 0 0 0
.5 1 0 .5 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

is not almost stochastic. For ε = .3 and ε/n = .05, work out the Google matrix G,
along with the limit rankings for the six sites. If you were upset that site 4 was ranked
as equal to site 3 in the game you played for stage 1, you may be happier now.

Historical notes

The Perron–Frobenius theorem had historical applications to input–output economic mod-
eling. The idea of using it for ranking seems to have originated with Joseph B. Keller, a
Stanford University emeritus mathematics professor. According to a December 2008 article
in the Stanford Math Newsletter [Keller, 2008], Professor Keller originally explained his team
ranking algorithm in the 1978 Courant Institute Christmas Lecture, and later submitted an
article to Sports Illustrated in which he used his algorithm to deduce unbiased rankings for
the National League baseball teams at the end of the 1984 season. His article was rejected.
Utah professor James Keener visited Stanford in the early 1990s, learned of Joe Keller’s idea,
and wrote a SIAM article in which he ranked football teams [Keener, 1993].

Keener’s ideas seem to have found their way into some of the current BCS college football
ranking schemes which often cause boosters a certain amount of heartburn. I know of no
claim that there is any direct path from Keller’s original insights, through Keener’s paper, to
Brin and Pages’ amazing Google success story. Still it is interesting to look back and notice
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that the seminal idea had been floating “in the air” for a number of years before it occurred
to anyone to apply it to Internet searches.

Acknowledgement: Thanks to Jason Underdown for creating the graph diagrams and
for typesetting this document in LATEX.
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Pac 12 football rankings as of last week and based only on games played between two Pac 12 teams: 
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Part 2 Monday
Eigenvalues and eigenvectors for square matrices, sections 5.1-5.2

The steady state vectors for stochastic matrices in section 4.9, i.e. the vectors x with P x = x when P is 
stochastic, are a special case of the concept of eigenvectors and eigenvalues for general square matrices, as 
we'll see below.

To introduce the general idea of eigenvalues and eigenvectors we'll first think geometrically.

Example   Consider the matrix transformation T : 2 2 with formula

T
x1

x2
=

3 0

0 1

x1

x2
= x1

3

0
x2

0

1
 .

Notice that for the standard basis vectors e1 = 1, 0 T, e2 = 0 , 1 T 
T e1 = 3e1 
T e2 = e2  .

In other words, T stretches by a factor of 3 in the e1 direction, and by a factor of 1 in the e2 direction, 
transforming a square grid in the domain into a parallel rectangular grid in the image:



Definition:  If An n and if A v =  v for a scalar  and a vector v 0  then v is called an eigenvector of A ,

and  is called the eigenvalue of v .  (In some texts the words characteristic vector and characteristic value 
are used as synonyms for these words.)

  In the example above, the standard basis vectors (or multiples of them) are eigenvectors, and the 
corresponding eigenvalues are the diagonal matrix entries.  A non-diagonal matrix may still have 
eigenvectors and eigenvalues, and this geometric information can still be important to find.  (For example, 
a stochastic matrix P always has eigenvectors with eigenvalue 1, namely the steady-state vector and its 
multiples.  But how do you find eigenvectors and eigenvalues for general non-diagonal matrices?

Exercise 1)  Try to find eigenvectors and eigenvalues for the non-diagonal matrix, by just trying random 
input vectors x and computing A x.

A =
3 2

1 2
 .



How to find eigenvalues and eigenvectors (including eigenspaces) systematically:

If
           A v =  v 

A v  v = 0       

A v  I v = 0          
where I is the identity matrix.

 A  I v = 0 .

Unlike in section 4.9 where the stationary vector was an eigenvector with eigenvalue 1, we don't have a 
clue as to what the eigenvalues of A are, in general.  But we can figure that out using what we know about 
determinants!  As we know, this last equation can have non-zero solutions v if and only if the matrix 

A  I  is not invertible, i.e. 

det A  I = 0 .

So, to find the eigenvalues and eigenvectors of matrix you can proceed as follows:

     Compute the polynomial in λ 
p = det A  I  .

If An n then p  will be degree n.  This polynomial is called the characteristic polynomial of the matrix 
A. 

     j can be an eigenvalue for some non-zero eigenvector v if and only if it's a root of the characteristic 

polynomial, i.e. p j = 0.  For each such root, the homogeneous solution space of vectors v solving

A j I v = 0 
i.e. by finding

Nul A j I . 

This subspace of eigenvectors will be at least one dimensional, since A j I  does not reduce to the 
identity. Find a basis of eigenvectors for this subspace.  Follow this procedure for each eigenvalue, i.e. for 
each root of the characteristic polynomial.

Notation:  The subspace of eigenvectors for eigenvalue j is called the j eigenspace, and we'll denote it by
E

=
j
 .     The basis of eigenvectors is called an eigenbasis for E

j
 . 



Exercise 2)  a)  Use the systematic algorithm to find the eigenvalues and eigenbases for the non-diagonal 
matrix of Exercise 2.

A =
3 2

1 2
 .

b)  Use your work to describe the geometry of the linear transformation in terms of directions that get 
scaled:

T
x1

x2
=

3 2

1 2

x1

x2
.



Tues Oct 30
       5.1-5.2  finding matrix eigenvalues and eigenvectors via the characteristic equation 
     

Announcements: 

Warm-up Exercise:



Exercise 1)  Find the eigenvalues and eigenspace bases for

B :=

4 2 1

2 0 1

2 2 3
 .

(i)  Find the characteristic polynomial and factor it to find the eigenvalues.   (p = 2
2

1 )

(ii) for each eigenvalue, find bases for the corresponding eigenspaces.

(iii) Can you describe the transformation T x = Bx geometrically using the eigenbases?  Does det B  
have anything to do with the geometry of this transformation?



Your solution will be related to the output below:

It often turns out that by collecting bases from each eigenspace for the matrix An n, and putting them 
together, we get a basis for n .  This lets us understand the geometry of the transformation

T x = A x  
almost as well as if A is a diagonal matrix.  It does not always happen that the matrix A an basis of n 
made consisting of eigenvectors for A.  (Even when all the eigenvalues are real.) When it does happen, we 
say that A is diagonalizable.  



There are situations where we are guaranteed a basis of n made out eigenvectors of A: 

Theorem 1:  Let A be an n n matrix with distinct real eigenvalues 1, 2 , .... n.  Let v1, v2, ... vn be 

corresponding (non-zero) eigenvectors, A vj = j vj.  Then the set

 v1, v2, ... vn  
is linearly independent, and so is a basis for n.....this is one theorem we can prove!



Exercise 2)  Find the eigenvalues and eigenspace bases for the matrix below, and explain why there is no 
basis for 2 consisting of eigenvectors for this matrix:

C =
3 2

0 3
.

 



Theorem 2

Let An n have factored characteristic polynomial

 p = 1 n
1

k
1

2

k
2

... m

k
m
  

where like terms have been collected so that each j is distinct (i.e different).  Notice that 
k1 k2 ... km = n 

because the degree of p  is n.

   Then 1  dim E
=

j
kj .   If  dim E

=
j

kj then the j eigenspace is called defective.

   The matrix A is diagonalizable if and only if each dim E
=

j
= kj .  In this case, one obtains an n 

eigenbasis simply by combining bases for each eigenspace into one collection of n vectors.  (The same 
definitions and reasoning can apply to complex eigenvalues and eigenvectors, and a basis of n.)

(The proof of this theorem is fairly involved. It is illustrated in a positive way by Exercise 1, and in a 
negative way by Exercise 2.  )



Wed Oct 31
       5.3  diagonalizable matrices
     

Announcements: 

Warm-up Exercise:



Continuing with the example from yesterday ...

If, for the matrix An n, there is a basis for n consisting of eigenvectors of A, then   we can understand 
the geometry of the transformation

T x = A x  

almost as well as if A is a diagonal matrix, and so we call such matrices diagonalizable.  Having such a 
basis of eigenvectors for a given matrix is also extremely useful for algebraic computations, and will give 
another reason for the word diagonalizable to describe such matrices.

Use an 3 basis made of out eigenvectors of the matrix B in Exercise 1, yesterday, and put them into the 
columns of a matrix we will call P.  We could order the eigenvectors however we want, but we'll put the 
E

= 2
 basis vectors in the first two columns, and the E

= 3
 basis vector in the third column:

P :=

0 1 1

1 0 1

2 2 1
  .

Now do algebra (check these steps and discuss what's going on!)
4 2 1

2 0 1

2 2 3

0

1

2

1

0

2

1

1

1
              

                 =

0

2

4

2

0

4

3

3

3
             

                         =

0

1

2

1

0

2

1

1

1

2 0 0

0 2 0

0 0 3
   .

In other words,
 B P = P D , 



where D is the diagonal matrix of eigenvalues (for the corresponding columns of eigenvectors in P).  
Equivalently (multiply on the right by P 1  or on the left by P 1):

B = P D P 1 and P 1BP = D.
Exercise 1)  Use one of the the identities above to show how B100 can be computed with only two matrix 
multiplications! 



Definition:  Let An n.  If there is an n (or n  basis v1, v2, ..., vn consisting of eigenvectors of A, then A 
is called diagonalizable.  This is precisely why:

Write A vj = j vj  (some of these j may be the same, as in the previous example).  Let P be the matrix
P = v1 v2 ... vn . 

Then, using the various ways of understanding matrix multiplication, we see

A P = A v1 v2 ... vn  = 1v1 2v2 ... nvn           

  = v1 v2 ... vn

1 0 ... 0

0 2 ... 0

: : ... :

0 0 ... n

. 

A P = P D 
A = P D P 1 
P 1A P = D .

Unfortunately, as we've already seen, not all matrices are diagonalizable:
Exercise 2)  Show that 

C :=

2 1 0

0 2 0

0 0 3
  

is not diagonalizable.  (Even though it has the same characteristic polynomial as B, which was 
diagonalizable.



Fri Nov 2
       5.4  eigenvalues, eigenvectors and linear transformations
     

Announcements: 

Warm-up Exercise:



If we have a linear transformation T : V W  and bases  B = b1, b2, ... bn  in V,  C = c1, c2, ... cm  in 
W, then the matrix of T with respect to these two bases transforms the B coordinates of vectors v V to 
the C coordinates of T v  in a straightforward way, although it takes a while to get used to:

Exercise 1)  Let V = P3 = span 1, t, t2, t3 ,  W = P2 = span 1, t, t2 , and let D : V W be the derivative 

operator.  Find the matrix of D with respect to the bases 1, t, t2, t3  in V and 1, t, t2  in W.   Test your 
result.



A special case of the previous page is when T : n n is a matrix transformation T x = A x, and we 
find the matrix of T with respect to a non-standard basis (the same non-standard basis in the domain and in
the codomain).  

Definition  Two matrices A, B are called similar if there is an invertible matrix P with B = P 1AP.   As the 
diagram above shows, similar matrices arise when one is describing the same linear transformation, but 
with respect to different bases.



Exercise 2)  What if a matrix A is diagonalizable?  What is the matrix of T x = A x with respect to the 
eigenbasis?  How does this connect to our matrix identities for diagonalization?  Fill in the matrix M 
below, and then compute another way to express it, as a triple product using the diagram.

Example, from earlier this week:

A =
3 2

1 2
           E

= 4
 = span

2

1
        E

= 1
= span

1

1
    B = 

2

1
, 

1

1
  

Write the various matrices corresponding to the diagram above.



Even if the matrix A is not diagonalizable, there may be a better basis to help understand the transformation
T x = A x.   The diagram on the previous page didn't require that B be a basis of eigenvectors....maybe it 
was just a "better" basis than the standard basis, to understand T.

Exercise 3   (If we have time - this one is not essential.)   Try to pick a better basis to understand the matrix
transformation T x = C x, even though the matrix C is not diagonalizable.  Compute M = P 1A P  or 
compute M directly, to see if it really is a "better" matrix.

C =
4 4

1 0
  


