Friday Sept 21
3.1 introduction to determinants
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Math 2270-002
Homework due September 26.

Recall that problems which are not underlined are good for seeing if you can work with the underlying
concepts; only the underlined problems need to be handed in. The Wednesday quiz will be drawn from all
of these concepts and from these or related problems.

3.1 Introduction to determinants

1,3,9,15, 25,27, 29,31, 32, 39, 40, 41

—_— ) ) ) ) B )

3.2: Properties of determinants

3.3: Determinants and linear transformations; adjoint formula and Cramer's rule.

3,5,13,18,21,23,27,29,31

w5.1a) Use Cramer's rule to re-solve for x and y in the linear system w4.1¢ from previous homework,
3 2

namely
-1
4 -1 ||y 6 |

wS.1b) Compute the determinants of the two matrices in w4.2 from previous homework, and verify that
the determinant test correctly identifies the invertible matrix. The two matrices were

X

-1 1 -4 01 1
A= -1 -1 2 B = 12 3
4 1 1 -2 1 -2

wS.1¢) Use the adjoint formula to re-find B lin w5.1b.
w5.1d) Use B”! to solve the system
01 1]} x 0
12 3|y|=]1
-2 1 -2 ||z 2
wS.1e) Re-solve for the y -variable in w5.1d), using Cramer's Rule.



The following discussion and problems are related to section 1.9 and to our discussion of determinants in
Chapter 3.

An affine transformation is a composition of a translation and a linear transformation. (When you talked
about "tangent approximations" to functions in multivariable Calculus you were often talking about affine
transformations. Single variable and multivariable differential calculus is built on the idea that for small
scales, differentiable functions can be approximated well by affine functions. ) In the following problems
we'll specialize to affine transformations F from R? to [R2, i.e. functions of the form

REEEY

Since linear transformations transform families of parallel lines into families of parallel lines (or to points),
the same is true for affine transformations. So as long as the transformations are 1-1 they will transform
rectangular grid systems into parallelgram ones, and you can understand the entire grid from the image of a
single coordinate square. Interpreting this algebraically, note that from the definition of F, (e+c,§+4
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So you can reconstruct the translation vector and the two matrix columns for the affine function as soon as
you know the images of 0, ¢, e, . For example, I reconstructed the transformation formula for Giant
Bob in the upper right corner of the next page. Notice that Giant Bob on the next page has six times the
area of original Bob - since original Bob can be filled up with different-sized squares, and the images of
those squares will be rectangles having six times the original areas. There is an interesting connection
between area expansion factors of affine transformations, and the determinants of the associated matrices.

Recall that the determinant of a 2 by 2 matrix is given by

1

a ¢

b d
Note that the determinant of Giant Bob's transformation matrix also equals 6.

det = ad-bc.
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wS.2 Reconstruct the formulas for at least three more of the six (non-identity) transformations of Bob on
the previous page, and comment on how the areas of the transformed Bobs are related to the determinants
of the matrices in the transformations. Note that the Bob in the lower right corner got flipped over.

5.3

a Find formulas for the two affine transformations of Bob indicated below.

b Squares in original Bob get transformed into parallelgrams in the image Bobs, and the area expansion
factors are independent of the size of the original squares. So, you can deduce the area expansion factor
for the image Bobs just by computing the area of the parallelgram image of the unit square. How do your
area expansion factors in these two examples compare to the matrix determinants from the affine

transformations?
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We'll talk more systematically about area/volume expansion factors and in arbitrary dimension, in class, but
for affine transformations from R? —R2 one can use geometry to connect determinants to area expansion
factors:

w5.4 Can you compute the area of the parallelgram below (in terms of the letters a, b, ¢, d )? Since
translations don't effect area, this will give the area expansion factor also for the images of arbitrary
regions, under affine transformations that do include a translation term

]:

Hint: Start with the area of the large rectangle of length a + ¢ and height » + d, then subtract off the areas
of the triangles and rectangles on the outside of the parallelgram. For convenience I chose the case where
all of a, b, c, d are positive, and where the transformation didn't "flip" the parallelgram:
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Determinants are scalars defined for square matrices 4, They always determine whether or not the

inverse matrix 4~ exists, (i.e. whether the reduced row echelon form of A4 is the identity matrix): In fact,
the determinant of 4 is non-zero if and only if A" exists. The determinant of a 1 x 1 matrix [all ] is

defined to be the number a . ; determinants of 2 x 2 matrices are defined as in yesterday's notes; and in

1’
general determinants for n x n matrices are defined recursively, in terms of determinants of

(n — 1) x (n — 1) submatrices:

Definition: Let4 = [al.j] . Then the determinant of A4, written det(A) or |4| , is defined by
n n
— _q\ Lt —
det(A) = j;alj( 1 Mlj—j;alelj.

Here M| ; is the determinant of the (n — 1) X (» — 1) matrix obtained from 4 by deleting the first row

and thefh column, and Clj is simply (-1 )1 +jM1j .

More generally, the determinant of the (n — 1) x (n — 1) matrix obtained by deleting row i and column j
from 4 is called the i j Minor ]\4l.j of 4, and Cl.j = (-1) +]Ml.j is called the i j Cofactor of 4 .

Exercise 1 Check that the messy looking definition above gives the same answer we talked about

“yesterday in the 2 X 2 case, namely
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from the last page, for our convenience:

Definition: Letd4 = [al.j] . Then the determinant of A4, written det(A) or |A| , is defined by
n n
o Sy =
det(A) = ,Zlalf( 't j;aljclj.

Here M| ; is the determinant of the (n — 1) X (n» — 1) matrix obtained from 4 by deleting the first row

and thefh column, and Clj is simply (-1 )1 +jM1j .

Exercise 2 Work out the expanded formula for the determinant of a 3 x 3 matrix. It's not worth
memorizing (as opposed to the recursive formula above), but it's good practice to write out at least once,
and we might point to it later.
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Theorem: det(A4) can be computed by expanding across any row, say row i:
n n

det(4) = Da, (-1) /M, = Da, C,.
1

j=1 Jj=
or by expanding down any column, say column j:

det(4) = D, (-1) M, = Da, C, .
i=1 i=

Exercise 3a) Let 4 :=

other rows and columns to do the computation.)

\A\ = Qu H“ + qu(“ Mn.’) + ql", M”)
o |\ -1
.\

-6 —2(-2) —1{-0)
= 6+4 +6 =16
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From previous page,

I 2 -1
A=10 3 1
2 -2 1
5 2 -6
3b) Verify that the matrix of all the cofactors of 4 is given by [Cl.j] =0 3 6 |. Then expand
5 -1 3

det(A) down various columns and rows using the a; factors and Cl.j cofactors. Verify that you always

get the same value for det(A4), as the Theorem on the previous page guarantees. Notice that in each case
you are taking the dot product of a row (or column) of 4 with the corresponding row (or column) of the
cofactor matrix.
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3c) What happens if you take dot products between a row of 4 and a different row of [Cl.j] ? A column

of 4 and a different column of [Cl.j] ? The answer may seem magic. We'll come back to this example

when we talk about the magic formula for the inverses of 3 x 3 (or n X n) invertible matrices.
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