
Friday Sept 21
          3.1 introduction to determinants

Announcements: 

Warm-up Exercise: Look over the part of this week's Hw
having to do with affine transformations

handout

Try to construct the formula for
the function

which transforms Bob into medium large Bob
located at upper left ofpage for w 5.2 problem



Math 2270-002
Homework due September 26.

Recall that problems which are not underlined are good for seeing if you can work with the underlying 
concepts; only the underlined problems need to be handed in. The Wednesday quiz will be drawn from all 
of these concepts and from these or related problems.  

3.1 Introduction to determinants
       1, 3, 9, 15, 25, 27, 29, 31, 32, 39, 40, 41

3.2: Properties of determinants
      1, 2, 3, 4, 5, 21, 25, 27, 29, 31, 33, 39

3.3: Determinants and linear transformations; adjoint formula and Cramer's rule. 
      3, 5, 13, 18, 21, 23, 27, 29, 31

  w5.1a)  Use Cramer's rule to re-solve for x and  y in the linear system w4.1c from previous homework,
namely

3 2

4 1

x

y
=

1

6
  .

  w5.1b)  Compute the determinants of the two matrices in w4.2 from previous homework, and verify that 
the determinant test correctly identifies the invertible matrix.  The two matrices were

A :=

1 1 4

1 1 2

4 1 1
      B :=

0 1 1

1 2 3

2 1 2
   

  w5.1c)  Use the adjoint formula to re-find B 1 in w5.1b.  
  w5.1d)  Use B 1 to solve the system

0 1 1

1 2 3

2 1 2

x

y

z
=

0

1

2
 .

  w5.1e) Re-solve for the y -variable in w5.1d), using Cramer's Rule.



The following discussion and problems are related to section 1.9 and to our discussion of determinants in 
Chapter 3. 

An affine transformation is a composition of  a translation and a linear transformation.  (When you talked 
about "tangent approximations" to functions in multivariable Calculus you were often talking about affine 
transformations.  Single variable and multivariable differential calculus is built on the idea that for small 
scales, differentiable functions can be approximated well by affine functions. )  In the following problems 
we'll specialize to affine transformations F from 2 to 2, i.e. functions of the form

F
x

y
=

a c

b d

x

y

e

f
 .

Since linear transformations transform families of parallel lines into families of parallel lines (or to points), 
the same is true for affine transformations. So as long as the transformations are 1-1 they will transform 
rectangular grid systems into parallelgram ones, and you can understand the entire grid from the image of a
single coordinate square.  Interpreting this algebraically, note that from the definition of F,

F
0

0
=

e

f

F
1

0
=

a

b

e

f

F
0

1
=

c

d

e

f
,

So you can reconstruct the translation vector and the two matrix columns for the affine function as soon as 
you know the images of  0, e1, e2 .  For example,  I reconstructed the transformation formula for Giant 
Bob in the upper right corner of the next page.  Notice that Giant Bob  on the next page has six times the 
area of original Bob - since original Bob can be filled up with different-sized squares, and the images of 
those squares will be rectangles having six times the original areas.  There is an interesting connection 
between area expansion factors of affine transformations, and the determinants of the associated matrices.  
Recall that the determinant of a 2 by 2 matrix is given by

det 
a c

b d
=  ad bc.

Note that the determinant of Giant Bob's transformation matrix also equals 6.
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w5.2 Reconstruct the formulas for at least three more of the six (non-identity) transformations of Bob on 
the previous page, and comment on how the areas of the transformed Bobs are related to the determinants 
of the matrices in the transformations.  Note that the Bob in the lower right corner got flipped over.

w5.3  
a  Find formulas for the two affine transformations of Bob indicated below.
b  Squares in original Bob get transformed into parallelgrams in the image Bobs, and the area expansion 
factors are independent of the size of the original squares.  So, you can deduce the area expansion factor 
for the image Bobs just by computing the area of the parallelgram image of the unit square.  How do your 
area expansion factors in these two examples compare to the matrix determinants from the affine 
transformations?



We'll talk more systematically about area/volume expansion factors and in arbitrary dimension, in class, but
for affine transformations from 2 2 one can use geometry to connect determinants to area expansion 
factors:

w5.4  Can you compute the area of the parallelgram below (in terms of the letters a, b, c, d )?  Since 
translations don't effect area, this will give the area expansion factor also for the images of arbitrary 
regions, under affine transformations that do include a translation term

F
x

y
=

a c

b d

x

y

e

f
 .

Hint: Start with the area of the large rectangle of length a c and height b d, then subtract off the areas 
of the triangles and rectangles on the outside of the parallelgram.  For convenience I chose the case where 
all of a, b, c, d are positive, and where the transformation didn't "flip" the parallelgram:



Determinants are scalars defined for square matrices An n  They always determine whether or not the 

inverse matrix A 1 exists, (i.e. whether the reduced row echelon form of A is the identity matrix):  In fact, 
the determinant of A is non-zero if and only if A 1 exists. The determinant of a 1 1 matrix a11  is 
defined to be the number a11; determinants of 2 2 matrices are defined as in yesterday's notes; and in 
general determinants for n n matrices are defined recursively, in terms of determinants of 
n 1 n 1  submatrices:

Definition:  Let An n = ai j  .  Then the determinant of A, written det A  or A  , is defined by

det A
j = 1

n

a1 j 1 1 jM1 j =
j = 1

n

a1 jC1 j .

Here M1 j is the determinant of the n 1 n 1  matrix obtained from A by deleting the first row 

and the jth column, and C1 j is simply 1 1 jM1 j .

More generally, the determinant of the n 1 n 1  matrix obtained by deleting row i and column j 
from A is called the i j Minor Mi j  of A, and Ci j 1 i jMi j is called the i j Cofactor of A .

Exercise 1  Check that the messy looking definition above gives the same answer we talked about 
yesterday in the 2 2 case, namely

a11 a12

a21 a22
=  a11a22   a21 a12 .

earlier
this week

a I 1
t
Mi t 9,21 1 Miz

a 1 azz t 9,211792
9 922 92,912



from the last page, for our convenience:

Definition:  Let An n = ai j  .  Then the determinant of A, written det A  or A  , is defined by

det A
j = 1

n

a1 j 1 1 jM1 j =
j = 1

n

a1 jC1 j .

Here M1 j is the determinant of the n 1 n 1  matrix obtained from A by deleting the first row 

and the jth column, and C1 j is simply 1 1 jM1 j .

Exercise 2   Work out the expanded  formula for the determinant of a 3 3 matrix.  It's not worth 
memorizing (as opposed to the recursive formula above), but it's good practice to write out at least once, 
and we might point to it later.

a11 a12 a13

a21 a22 a23

a31 a32 a33

   =   q Cn M t a z l D M z t a I 1 3M

anttila az taii yaa aadtaisHyaai
a 922933 923932 9,2 az932 92393 t 913 921932 922931

This expandsto
a sum of six terms let's organizethemby

whethertheyhave t or coefficients

9 922933 t 912923931 t 913921932

a 923932 912923931 913922931

Interesting facts whichtrue for nxn determinants seeWc a

eachproductcontainsexactly oneentryfromeach row and
column

all suchproducts areaccountedfor
Inthe 3 3 case asyougodownthe rows

there are 3choices

forthe row I column thentwoforthe row2 column the
oneforthe row 3 column i e 3 2 I 3 6 terms

the t or sign depends onwhether it takes an even or odd
of column interchanges to gettheir orderingbackto

Ci 2 3
whenthe products are written as abone with rows in 1 2 3order
This is calledthe signofthecolumnpermutation



Theorem:  det A  can be computed by expanding across any row, say row i: 

det A
j = 1

n

ai j 1 i jMi j =
j = 1

n

ai jCi j

or by expanding down any column, say column j: 

det A
i = 1

n

ai j 1 i jMi j =
i = 1

n

ai jCi j .

Exercise 3a)  Let A :=

1 2 1

0 3 1

2 2 1
 .  Compute det A  using the definition.  (On the next page we'll use 

other rows and columns to do the computation.)

T

IA I a Mi t 9,2l Mir t 9131413
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From previous page,

A :=

1 2 1

0 3 1

2 2 1
 .

3b)  Verify that the matrix of all the cofactors of A is given by Ci j =

5 2 6

0 3 6

5 1 3
 .  Then expand 

det A  down various columns and rows using the ai j factors and Ci j cofactors.  Verify that you always 
get the same value for det A , as the Theorem on the previous page guarantees. Notice that in each case 
you are taking the dot product of a row (or column) of A with the corresponding row (or column) of the 
cofactor matrix.

A :=

1 2 1

0 3 1

2 2 1
             Ci j =

5 2 6

0 3 6

5 1 3
      

I l l it I
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row z A row c O t 9 t 6

colz A a colz C 4 t 9 t 2



3c)  What happens if you take dot products between a row of A and a different row of Ci j  ?  A column 
of A and a different column of Ci j  ?   The answer may seem magic.  We'll come back to this example 
when we talk about the magic formula for the inverses of 3 3  (or n n) invertible matrices.

A :=

1 2 1

0 3 1

2 2 1
             Ci j =

5 2 6

0 3 6

5 1 3
       

I

A
row A a row C O t G G
row A a row C lo ee 6
Cole A ul C 10 to to

So what does A CT equal Note thecolumnsof CT are the
rows of C so we're recomputing the various row dot products

n i sp.ITffII foisoi4
So A IsCT CT where C is the cofactor

matrix

this worksfor nxn matricesA
we'll seewhynextweek


