There are situations where we are guaranteed a basis of \mathbb{R}^n made out eigenvectors of A:

Theorem 1: Let A be an $n \times n$ matrix with distinct real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. Let $\underline{\boldsymbol{v}}_1, \underline{\boldsymbol{v}}_2, \dots, \underline{\boldsymbol{v}}_n$ be corresponding (non-zero) eigenvectors, $A\underline{\boldsymbol{v}}_j = \lambda_j \underline{\boldsymbol{v}}_j$. Then the set

is linearly independent, and so is a basis for
$$\mathbb{R}^n$$
.......this is one theorem we can prove!

Example

Exercise 1 Monday: $A = \begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix}$
 $P(\lambda) = (\lambda - 4)(\lambda - 1)$
 $E_{\lambda=4} = Span\{\begin{bmatrix} 2 \\ 1 \end{bmatrix}\}$
 $E_{\lambda=1} = span\{\begin{bmatrix} 2 \\ 1 \end{bmatrix}\}$

note, we see $\{\begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix}\}$ are a basis for \mathbb{R}^2

Theorem 1 gasa granualles this in general case

Exercise 2) Find the eigenvalues and eigenspace bases for the matrix below, and explain why there is no basis for \mathbb{R}^2 consisting of eigenvectors for this matrix:

$$C = \left[\begin{array}{cc} 3 & 2 \\ 0 & 3 \end{array} \right].$$

Theorem 2

Let $A_{n \times n}$ have factored characteristic polynomial

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{k_1} (\lambda - \lambda_2)^{k_2} ... (\lambda - \lambda_m)^{k_m}$$

where like terms have been collected so that each λ_i is distinct (i.e different). Notice that

$$k_1 + k_2 + ... + k_m = n$$

because the degree of $p(\lambda)$ is n.

- Then $1 \le dim\left(E_{\lambda=\lambda_j}\right) \le k_j$. If $dim\left(E_{\lambda=\lambda_j}\right) < k_j$ then the λ_j eigenspace is called <u>defective</u>.
- The matrix A is diagonalizable if and only if each $dim\left(E_{\lambda=\lambda_{i}}\right)=k_{j}$. In this case, one obtains an \mathbb{R}^{n}

eigenbasis simply by combining bases for each eigenspace into one collection of n vectors. (The same definitions and reasoning can apply to complex eigenvalues and eigenvectors, and a basis of \mathbb{C}^n .)

(The proof of this theorem is fairly involved. It is illustrated in a positive way by Exercise 1) and in a negative way by Exercise (2.)

inequation way by Excession (2)

$$B = \begin{bmatrix} 4 & -2 & 1 \\ 2 & 0 & 1 \\ 2 & -2 & 3 \end{bmatrix} \quad p(\lambda) = -(\lambda - 2)^{2}(\lambda - 3)$$

$$E_{\lambda} = 2 = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\} \quad \text{Theorem}$$

$$E_{\lambda} = 3 = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\} \quad \text{Theorem bad case.}$$

$$E_{\lambda} = 3 = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$$

$$\text{are a ban's for } \mathbb{R}^{3}$$
without the theorem weld read to check
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \quad \text{Theorem bad case.}$$

$$\begin{cases} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

$$\text{are below the proof of the proof of$$

(2)
$$C = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix}$$
 $p(\lambda) = (\lambda - 3)^2$ base
$$E_{\lambda = 3} = span \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\} dim = 1$$
Theorem bad case.
$$(Tresday warmap)$$

Wed Oct 31

• 5.3 diagonalizable matrices

Announcements: 5.3 HW (1), 13, (2), (23) (25) (29) (31)

(I hope to come

(I hope to post the complete assignment, including a 10 pt. extra credit problem on Pac12 frotball rankings, by tonight.)

first finish Tues. no les

Warm-up Exercise: a) let $D = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Find the eigenvalues and eigenvectors (eigenspace bases) for D.

b) What is the matrix power D'0?

Fact: for a diagonal matrix, the standard basis vectors are eigenvectors, the eigenvalues are corresponding diagonal entries.

don't need to use general algorithm... but it would venify

(a)
$$|D-\lambda I| = \begin{vmatrix} 2-\lambda & 0 \\ 0 & 3-\lambda \end{vmatrix} = (2-\lambda)(3-\lambda) = (\lambda-2)(\lambda-3)$$
 evals $\lambda = 2,3$

e.g. $E_{\lambda=2}$: $0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$ Nul(D-2I)

(b) Recall, diagonal matrices are easy to multiply

$$\begin{bmatrix}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{bmatrix}
\begin{bmatrix}
b_{1} & 0 & 0 \\
0 & b_{2} & 0 \\
0 & 0 & b_{3}
\end{bmatrix} =
\begin{bmatrix}
b_{1}a_{1} & 0 & 0 \\
0 & a_{2}b_{2} & 0 \\
0 & 0 & a_{3}b_{3}
\end{bmatrix}$$

(product of 2 diagonal matries is diagonal; entries are the products of the corresponding entries in A,B) = (200) [0 310]

backsolve $V_1 = t$ free $V_2 = 0$ $\vec{V} = t \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{D}^{10} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 10 \\ 0 & 3 \end{bmatrix}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ $\vec{E}_{\lambda=2} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$ \vec{E}

Continuing with the example from yesterday ...

If, for the matrix $A_{n \times n}$, there is a basis for \mathbb{R}^n consisting of eigenvectors of A, then we can understand the geometry of the transformation

$$T(\underline{x}) = A \underline{x}$$

almost as well as if A is a diagonal matrix, and so we call such matrices diagonalizable. Having such a basis of eigenvectors for a given matrix is also extremely useful for algebraic computations, and will give another reason for the word diagonalizable to describe such matrices.

Use an \mathbb{R}^3 basis made of out eigenvectors of the matrix B in Exercise 1, yesterday, and put them into the columns of a matrix we will call P. We could order the eigenvectors however we want, but we'll put the $E_{\lambda=2}$ basis vectors in the first two columns, and the $E_{\lambda=3}$ basis vector in the third column:

Now do algebra (check these steps and discuss what's going on!)

In other words,

$$BP = PD$$
,
 $BP^{-1} = PDP^{-1}$ $P^{-1}RP = P^{-1}PD$
 $P^{-1}RP = P$

where D is the diagonal matrix of eigenvalues (for the corresponding columns of eigenvectors in P). Equivalently (multiply on the right by P^{-1} or on the left by P^{-1}): $B = P D P^{-1} \text{ and } P^{-1}BP = D.$

$$B = P D P^{-1}$$
 and $P^{-1}BP = D$.

Exercise 1) Use one of the the identities above to show how B^{100} can be computed with only two matrix multiplications!

$$B^{100} = (PDP^{-1})(PDP^{-1}) \cdot -- (PDP^{-1})$$

$$= PD(P^{-1}P)D(P^{-1}P)D -- PDP^{-1}$$

$$= PD^{100}P^{-1}$$

$$= PD^{100}P^{-1}$$

$$B^{100} = P\begin{bmatrix} 2^{100}O & O \\ O & 2^{100}O \\ O & 0 & 3^{100} \end{bmatrix} P^{-1}$$

<u>Definition</u>: Let $A_{n \times n}$. If there is an \mathbb{R}^n (or \mathbb{C}^n) basis $\underline{v}_1, \underline{v}_2, ..., \underline{v}_n$ consisting of eigenvectors of A, then A is called <u>diagonalizable</u>. This is precisely why:

Write $A \underline{\mathbf{v}}_j = \lambda_j \underline{\mathbf{v}}_j$ (some of these λ_j may be the same, as in the previous example). Let P be the matrix

 $P = \left[\underline{v}_1 | \underline{v}_2 | \dots | \underline{v}_n \right].$ Then, using the various ways of understanding matrix multiplication, we see

$$\begin{split} A\,P &= A \Big[\underbrace{\boldsymbol{v}_1} \big| \underline{\boldsymbol{v}_2} \big| \dots \big| \underline{\boldsymbol{v}_n} \Big] = \Big[\lambda_1 \underline{\boldsymbol{v}_1} \big| \lambda_2 \underline{\boldsymbol{v}_2} \big| \dots \big| \lambda_n \underline{\boldsymbol{v}_n} \Big] \\ &= \Big[\underbrace{\boldsymbol{v}_1} \big| \underline{\boldsymbol{v}_2} \big| \dots \big| \underline{\boldsymbol{v}_n} \Big] \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \\ & A\,P &= P\,\mathbf{D} \\ & A &= P\,\mathbf{D}\,P^{-1} \\ & P^{-1}A\,P &= \mathbf{D} \;. \end{split}$$

Unfortunately, as we've already seen, not all matrices are diagonalizable: Exercise 2) Show that

$$C := \left[\begin{array}{ccc} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{array} \right]$$

is \underline{not} diagonalizable. (Even though it has the same characteristic polynomial as B, which was diagonalizable.