Exercise 2) a) Use the systematic algorithm to find the eigenvalues and eigenbases for the non-diagonal matrix of Exercise 2.

Use your work to describe the geometry of the linear transformation in terms of directions that get scaled:

$$T\left(\left[\begin{array}{c} x_1 \\ x_2 \end{array}\right]\right) = \left[\begin{array}{cc} 3 & 2 \\ 1 & 2 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \end{array}\right].$$

(1)
$$(A-\lambda I) \vec{\nabla} = \vec{O}$$

 $|A-\lambda I| = 0 = \begin{vmatrix} 3-\lambda & 2 \\ 1 & 2-\lambda \end{vmatrix} = (3-\lambda)(2-\lambda) - 2 = \lambda^2 - 5\lambda + 6-2$
 $= \lambda^2 - 5\lambda + 4$
 $= (\lambda - 4)(\lambda - 1)$
 $= 0$ when $\lambda = 4, 1$

$$\begin{aligned}
E_{\lambda=4} &= \text{Nul}(A-4I) \\
E_{\lambda=4} &= \text{span}\left\{\begin{bmatrix} 2\\1 \end{bmatrix}\right\} & -1 & 2 & 0 \\
& 1 & -2 & 0 \\
& 0 & 0 & 0
\end{aligned}$$

$$\vec{\nabla} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

chech. $\begin{bmatrix} 3 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

The sday $\tilde{E}_{\lambda=1} = 2 = 2 \quad 0$ $\frac{1 \quad 1 \quad 0}{1 \quad 1 \quad 0}$ $0 \quad 0 \quad 0$ $E_{\lambda=1} = \text{span} \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$

Tues Oct 30

• 5.1-5.2 finding matrix eigenvalues and eigenvectors via the characteristic equation

Announcements:

scalar due eigenvector

If
$$A\vec{v} = \lambda\vec{v}$$
 eigenvector

Warm-up Exercise:

 $C = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix} = 3 \begin{bmatrix} 1 & \frac{3}{3} \\ 0 & 1 \end{bmatrix}$ Shear

$$C \stackrel{?}{\checkmark} = \stackrel{?}{\checkmark}$$

$$C \stackrel{?}{\checkmark} = \stackrel{?}{\checkmark}$$

$$(C \stackrel{?}{\checkmark} = \stackrel{?}{\checkmark}) \stackrel{?}{\checkmark} = \stackrel{?}{\checkmark}$$

$$(C - \lambda I) \stackrel{?}{\vee} = \stackrel{?}{\circ}$$

degreen poly. "characteristic "

$$C - \lambda I = \begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$|C - \lambda I| = \begin{vmatrix} 3 - \lambda & 2 \\ 0 & 3 - \lambda \end{vmatrix} = (3 - \lambda)^{2} \text{ sef} = 0$$

$$|A - \lambda| = (3 - \lambda)^{2} \text{ sef} = 0$$

$$\begin{bmatrix} 3 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = Span \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$
 because $1 \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} + o \begin{bmatrix} 2 \\ 0 \end{bmatrix} = 0$

Exercise 1) Find the eigenvalues and eigenspace bases for

$$B := \left[\begin{array}{ccc} 4 & -2 & 1 \\ 2 & 0 & 1 \\ 2 & -2 & 3 \end{array} \right].$$

- (i) Find the characteristic polynomial and factor it to find the eigenvalues. $(p(\lambda) = -(\lambda 2)^2(\lambda 3))$
- (ii) for each eigenvalue, find bases for the corresponding eigenspaces.
- (iii) Can you describe the transformation $T(\underline{x}) = B\underline{x}$ geometrically using the eigenbases? Does det(B) have anything to do with the geometry of this transformation?

(i)
$$|B-\lambda I| = 0$$

 $\begin{vmatrix} 4-\lambda & -2 & 1 \\ 2 & -\lambda & 1 \\ 2 & -2 & 3-\lambda \end{vmatrix}$
 $= \begin{vmatrix} 4-\lambda & -2 & 1 \\ 2 & -\lambda & 1 \end{vmatrix}$
 $-P_2 + P_3 \rightarrow P_3 \qquad 0 \quad \lambda - 2 \quad 2 - \lambda$
 $= (2-\lambda) \begin{vmatrix} 4-\lambda & -2 & 1 \\ 2 & -\lambda & 1 \\ 0 & -1 & 1 \end{vmatrix}$
 $= (2-\lambda) \begin{vmatrix} 4-\lambda & -1 \\ 2 & -\lambda + 1 \end{vmatrix}$
 $= (2-\lambda) \begin{vmatrix} 4-\lambda & -1 \\ 2 & -\lambda + 1 \end{vmatrix}$
 $= (2-\lambda) \begin{vmatrix} 4-\lambda & -1 \\ 2 & -\lambda + 1 \end{vmatrix}$
 $= (2-\lambda) \begin{bmatrix} (4-\lambda)(-\lambda+1) + 2 \\ 2 & -\lambda + 1 \end{bmatrix}$
 $= (2-\lambda) \begin{bmatrix} (4-\lambda)(-\lambda+1) + 2 \\ 2 & -\lambda + 1 \end{bmatrix}$
 $= (2-\lambda) \begin{bmatrix} (4-\lambda)(-\lambda+1) + 2 \\ 2 & -\lambda + 1 \end{bmatrix}$
 $= (2-\lambda) \begin{bmatrix} (4-\lambda)(-\lambda+1) + 2 \\ 2 & -\lambda + 1 \end{bmatrix}$
 $= (2-\lambda) \begin{bmatrix} (4-\lambda)(-\lambda+1) + 2 \\ 2 & -\lambda + 1 \end{bmatrix}$
 $= (2-\lambda) \begin{bmatrix} (4-\lambda)(-\lambda+1) + 2 \\ 2 & -\lambda + 1 \end{bmatrix}$
 $= (2-\lambda) \begin{bmatrix} (4-\lambda)(-\lambda+1) + 2 \\ 2 & -\lambda + 1 \end{bmatrix}$
 $= (2-\lambda) \begin{bmatrix} (4-\lambda)(-\lambda+1) + 2 \\ 2 & -\lambda + 1 \end{bmatrix}$

$$E_{\lambda=2}: z - 2 | 0$$

$$z - 2 | 0$$

$$z - 2 | 0$$

$$1 - 1 \cdot 5 | 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0$$

$$0 0 0 0 0$$

$$0 0 0 0 0$$

Your solution will be related to the output below:

It often turns out that by collecting bases from each eigenspace for the matrix $A_{n \times n}$, and putting them together, we get a basis for \mathbb{R}^n . This lets us understand the <u>geometry</u> of the transformation

$$T(\underline{x}) = A \underline{x}$$

almost as well as if A is a diagonal matrix. It does not always happen that the matrix A an basis of \mathbb{R}^n made consisting of eigenvectors for A. (Even when all the eigenvalues are real.) When it does happen, we say that A is <u>diagonalizable</u>.

There are situations where we are guaranteed a basis of \mathbb{R}^n made out eigenvectors of A:

<u>Theorem 1</u>: Let *A* be an $n \times n$ matrix with distinct real eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$. Let $\underline{\boldsymbol{v}}_1, \underline{\boldsymbol{v}}_2, \dots, \underline{\boldsymbol{v}}_n$ be corresponding (non-zero) eigenvectors, $A \underline{\mathbf{v}}_j = \lambda_j \underline{\mathbf{v}}_j$. Then the set

$$\{\underline{\boldsymbol{v}}_1,\underline{\boldsymbol{v}}_2,\ldots\underline{\boldsymbol{v}}_n\}$$

 $\left\{\underline{\nu}_1,\underline{\nu}_2,\dots\underline{\nu}_n\right\}$ is linearly independent, and so is a basis for \mathbb{R}^nthis is one theorem we can prove!

Exercise 2) Find the eigenvalues and eigenspace bases for the matrix below, and explain why there is no basis for \mathbb{R}^2 consisting of eigenvectors for this matrix:

$$C = \left[\begin{array}{cc} 3 & 2 \\ 0 & 3 \end{array} \right].$$