
Exercise 2)  a)  Use the systematic algorithm to find the eigenvalues and eigenbases for the non-diagonal 
matrix of Exercise 2.

A =
3 2

1 2
 .

b)  Use your work to describe the geometry of the linear transformation in terms of directions that get 
scaled:
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Tues Oct 30
       5.1-5.2  finding matrix eigenvalues and eigenvectors via the characteristic equation 
     

Announcements: 

Warm-up Exercise:
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Exercise 1)  Find the eigenvalues and eigenspace bases for

B :=

4 2 1

2 0 1

2 2 3
 .

(i)  Find the characteristic polynomial and factor it to find the eigenvalues.   (p = 2
2

1 )

(ii) for each eigenvalue, find bases for the corresponding eigenspaces.

(iii) Can you describe the transformation T x = Bx geometrically using the eigenbases?  Does det B  
have anything to do with the geometry of this transformation?
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Your solution will be related to the output below:

It often turns out that by collecting bases from each eigenspace for the matrix An n, and putting them 
together, we get a basis for n .  This lets us understand the geometry of the transformation

T x = A x  
almost as well as if A is a diagonal matrix.  It does not always happen that the matrix A an basis of n 
made consisting of eigenvectors for A.  (Even when all the eigenvalues are real.) When it does happen, we 
say that A is diagonalizable.  



There are situations where we are guaranteed a basis of n made out eigenvectors of A: 

Theorem 1:  Let A be an n n matrix with distinct real eigenvalues 1, 2 , .... n.  Let v1, v2, ... vn be 

corresponding (non-zero) eigenvectors, A vj = j vj.  Then the set

 v1, v2, ... vn  
is linearly independent, and so is a basis for n.....this is one theorem we can prove!



Exercise 2)  Find the eigenvalues and eigenspace bases for the matrix below, and explain why there is no 
basis for 2 consisting of eigenvectors for this matrix:

C =
3 2

0 3
.

 

This was an warm up exercise


