## Part 2:

For an  $m \times n$  matrix A there are actually four interesting subspaces. We've studied the first two of these quite a bit:

$$Nul A = \{ \underline{x} \in \mathbb{R}^n : A \underline{x} = \underline{\mathbf{0}} \} \subseteq \mathbb{R}^n$$

and

$$Col\ A = \{\underline{\boldsymbol{b}} \in \mathbb{R}^m : \underline{\boldsymbol{b}} = A\ \underline{\boldsymbol{x}}, \underline{\boldsymbol{x}} \in \mathbb{R}^n\} = span\{\underline{\boldsymbol{a}}_1, \underline{\boldsymbol{a}}_2, \dots \underline{\boldsymbol{a}}_n\} \subseteq \mathbb{R}^m.$$

(Here we expressed  $A = [\underline{\boldsymbol{a}}_1 \ \underline{\boldsymbol{a}}_2 \ ... \ \underline{\boldsymbol{a}}_n]$  in terms of its columns.) Through homework and class discussions we've understood the  $rank+nullity\ Theorem$ , that  $dim\ Col\ A + dim\ Nul\ A = n$ . This theorem follows from considerations of the reduced row echelon form of A and is connected to the number of pivot columns and the number of non-pivot columns in A. On Friday we introduced the other two of the four interesting subspaces connected to A. These are

$$Row A := span\{\underline{\mathbf{R}}_1, \underline{\mathbf{R}}_2, \dots \underline{\mathbf{R}}_m\} \subseteq \mathbb{R}^n$$
, where we write  $A$  in terms of its rows,  $A = \begin{bmatrix} \underline{\mathbf{R}}_1 \\ \underline{\mathbf{R}}_2 \\ \vdots \\ \underline{\mathbf{R}}_m \end{bmatrix}$ .

Note that  $Row A = Col A^{T}$ . The final subspace is

Nul 
$$(A^T) = \{ \mathbf{y} \in \mathbb{R}^m : A^T \mathbf{y} = \mathbf{0} \} \subseteq \mathbb{R}^m$$

Exercise 1: Using the reduced row echelon form of A we have realized the following facts. Let's review our reasoning, some of which you understood in last week's homework and all of which we've discussed in class. I've pasted our warm-up discussion from Friday into the following page, where we studied a large example in this context:

$$dim(Col A) = \# pivot columns in A (=\# pivots)$$

$$dim(Nul A) = \# non-pivot columns in A$$

$$dim(Row A) = \# pivot rows in A (=\# pivots)$$

$$dim(Nul A^{T}) = \# non-pivot columns in A^{T}.$$

The dim(Col A) = dim(Row A) is called the <u>rank</u> of the matrix A and is the <u>number of pivots in both A</u> and  $A^{T}$ . If we call this number "r", then

$$dim(Nul A) = n - r$$
  
 $dim(Nul A^{T}) = m - r$ .

Example from Friday

## Math 2270-002 Friday October 19

Big example of four fundamental subspaces associated to each matrix.

Here is a matrix and it's reduced row echelon form, from quiz 7, and related matrices

 $A := \begin{bmatrix} 2 & -3 & -1 & -4 & 8 \\ 2 & -2 & 0 & -2 & 2 \\ 1 & 2 & 3 & 5 & 1 \\ \hline a & a & a & a & a \end{bmatrix}$ 

$$A^{T} = \begin{bmatrix} 1 & 2 & 2 & 1 \\ -1 & -3 & -2 & 2 \\ 0 & -1 & 0 & 3 \\ -1 & -4 & -2 & 5 \\ 5 & 8 & 2 & 1 \end{bmatrix}$$
row reduces to 
$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

|               | L | U | 1 |  |
|---------------|---|---|---|--|
| 4.            |   | 1 |   |  |
| ow reduces to | 0 | 0 | 0 |  |
|               | 0 | 0 | 0 |  |
|               |   |   | 1 |  |

| 2 1                      | or 10an  |     |      |   |
|--------------------------|----------|-----|------|---|
| 0 0 1<br>0 0 0<br>bass f |          | 0   | 600  | J |
| 0 0                      |          | 0   |      |   |
| 0 1                      |          |     | , 0  |   |
| 2 0                      | <b>₹</b> | -1  | -2   | ١ |
| 107                      | (        | [-] | 1-11 |   |

 $A^{T} = \begin{bmatrix} 1 & 2 & 2 & 1 \\ -1 & -3 & -2 & 2 \\ 0 & -1 & 0 & 3 \\ -1 & -4 & -2 & 5 \\ 5 & 8 & 2 & 1 \end{bmatrix}$ row reduces to  $\begin{bmatrix} 1 & 0 & 0 & \frac{9}{2} \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & \frac{5}{4} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$  (A column reduces to  $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \frac{9}{2} & -3 & \frac{5}{4} & 0 & 0 \end{bmatrix}$ .)

What are dim(Col A), dim(Nul A), dim(Row A),  $dim(Nul A^T)$ ? Can you find bases for each subspace? How could you find these dimensions in general?

dim (w/A) = 3 = \* of pivot cols in rref(A) dim (Nul A) = 2 = > of non-pivot vols = \* of free variables in solhs x to Ax = 6

= \$\pi\$ of pivot rows in ref(A)

dim (row A) = 3 = \$\pi\$ of pivot rows in ref(A)

dim (Nul AT) = 1 = \$\pi\$ of non-pivot cols in ref(AT)

because corresponding cols in A (\$\alpha\_1, a\_2, a\_3) are a pretty good basis

(same as \* pivot cols,)

T: RS -> RY RowA, NWA CRA, NWAT CRA, NWAT CRA, NWAT CRA, NWAT A is mxn

 $T: \mathbb{R}^n \to \mathbb{R}^m \quad T(x) = Ax$ 

S: Rm S(x)=ATx

5: R4 → R5

We figured out that in general A has m rows & n wlums

din Col A = dim Row A this is called the rank of the matrix din ColA + din Nul A = n (# of columns) (din of domain IR")

din RowA + din Nul AT = m (# of rows) (din of codomain)

Geometry connected to the four fundamental subspaces:

• First, recall the geometry fact that the dot product of two vectors in  $\mathbb{R}^n$  is zero if and only if the vectors are perpendicular, i.e.

$$\underline{\boldsymbol{u}} \cdot \underline{\boldsymbol{v}} = 0$$
 if and only if  $\underline{\boldsymbol{u}} \perp \underline{\boldsymbol{v}}$ .

(Well, we really only know this in  $\mathbb{R}^2$  or  $\mathbb{R}^3$  so far, from multivariable Calculus class. But it's true for all  $\mathbb{R}^n$ , as we'll see in Chapter 6.) So for a vector  $\underline{x} \in Nul\ A$  we can interpret the equation

$$A \underline{x} = \underline{0}$$

as saying that  $\underline{x}$  is perpendicular to every row of A. Because the dot product distributes over addition, we see that each  $\underline{x} \in Nul\ A$  is perpendicular to every linear combination of the rows of A, i.e. to all of  $Row\ A$ :

$$Row A \perp Nul A$$
.

And analogously,

$$Col A = Row A^T \perp Nul A^T$$

$$= \begin{bmatrix} Row_{1}(A) \\ Row_{2}(A) \\ \vdots \\ Row_{m}(A) \end{bmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

i.e. 
$$\begin{bmatrix} Row_{1}(A) \cdot \vec{x} \\ Row_{2}(A) \cdot \vec{x} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} Row_{1}(A) \cdot \vec{x} \\ 0 \end{bmatrix}$$

Wednesday warmup

(in Monday notes)

small example.

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$S\left(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right) = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$A^T = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$$

1) check

from Monday warmup: Nul A = span { [ ] } Row A = span { [ ] ]

Col A = span 
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix} \right\}$$
  
Nul A<sup>T</sup> = span  $\left\{ \begin{bmatrix} -2\\1 \end{bmatrix} \right\}$ 

2) Sketch Nul A, Row A in domain

Sketch ColA, NulAT in codomain.



Here's a general schematic of what's going on, stolen from the internet. The web site I stole it from looks pretty good....

 $\underline{http://www.itshared.org/2015/06/the-four-fundamental-subspaces.html}$ 



More details on the decompositions .... we'll cover this in more detail in Chapter 6, but here's what true: In the domain  $\mathbb{R}^n$ , the two subspaces associated to A are  $Row\ A$  and  $Nul\ A$ . Notice that the only vector in their intersection is the zero vector, since

$$\underline{x} \in Row A \cap Nul A \Rightarrow \underline{x} \cdot \underline{x} = 0 \Rightarrow \underline{x} = \underline{0}.$$

So, let

$$\{\underline{\boldsymbol{u}}_1,\underline{\boldsymbol{u}}_2,\ \dots\underline{\boldsymbol{u}}_r\}$$
 be a basis for  $Row\ A$ 

$$\{\underline{\mathbf{v}}_1,\underline{\mathbf{v}}_2, \dots \underline{\mathbf{v}}_{n-r}\}$$
 be a basis for *Nul A*.

Then we can check that set of n vectors obtained by taking the union of the two sets,

$$\left\{ \underline{\boldsymbol{u}}_{1}, \underline{\boldsymbol{u}}_{2}, \dots \underline{\boldsymbol{u}}_{r}, \underline{\boldsymbol{v}}_{1}, \underline{\boldsymbol{v}}_{2}, \dots \underline{\boldsymbol{v}}_{n-r} \right\}$$

is actually a basis for  $\mathbb{R}^n$ . This is because we can show that the *n* vectors in the set are linearly independent, so they automatically span  $\mathbb{R}^n$  and are a basis: To check independence, let

$$c_1 \underline{\boldsymbol{u}}_1 + c_2 \underline{\boldsymbol{u}}_2 + \dots + c_r \underline{\boldsymbol{u}}_r + d_1 \underline{\boldsymbol{v}}_1 + d_2 \underline{\boldsymbol{v}}_2 + \dots + d_{n-r} \underline{\boldsymbol{v}}_{n-r} = \underline{\boldsymbol{0}}.$$

then

$$c_1 \underline{\boldsymbol{u}}_1 + c_2 \underline{\boldsymbol{u}}_2 + \dots + c_r \underline{\boldsymbol{u}}_r = -d_1 \underline{\boldsymbol{v}}_1 - d_2 \underline{\boldsymbol{v}}_2 - \dots - d_{n-r} \underline{\boldsymbol{v}}_{n-r}.$$

Since the vector on the left is in *Row A* and the one that it equals on the right is in *Nul A*, this vector is the zero vector:

$$c_1 \underline{\boldsymbol{u}}_1 + c_2 \underline{\boldsymbol{u}}_2 + \dots + c_r \underline{\boldsymbol{u}}_r = \underline{\boldsymbol{0}} = -d_1 \underline{\boldsymbol{v}}_1 - d_2 \underline{\boldsymbol{v}}_2 - \dots - d_{n-r} \underline{\boldsymbol{v}}_{n-r}.$$

Since  $\{\underline{\boldsymbol{u}}_1,\underline{\boldsymbol{u}}_2,\dots\underline{\boldsymbol{u}}_r\}$  and  $\{\underline{\boldsymbol{v}}_1,\underline{\boldsymbol{v}}_2,\dots\underline{\boldsymbol{v}}_{n-r}\}$  are each linearly independent sets, we deduce from these two equations that

$$c_1 = c_2 = \dots = c_r = 0,$$
  $d_1 = d_2 = \dots = d_{n-r} = 0.$ 

O.E.D.

So the picture on the previous page is completely general (also for the decomposition of the codomain). One can check that the transformation  $T(\underline{x}) = A \underline{x}$  restricts to an isomorphism from  $Row\ A$  to  $Col\ A$ , because it is 1-1 on these subspaces of equal dimension, so must also be onto. So, T squashes  $Nul\ A$ , and maps every translation of  $Nul\ A$  to a point in  $Col\ A$ . More precisely, Each

$$\underline{x} \in \mathbb{R}^n$$

can be written uniquely as

$$\underline{x} = \underline{u} + \underline{v}$$
 with  $\underline{u} \in Row A$ ,  $\underline{v} \in Nul A$ .

and

$$T(\underline{\boldsymbol{u}} + \underline{\boldsymbol{v}}) = T(\underline{\boldsymbol{u}}) + T(\underline{\boldsymbol{v}}) = T(\underline{\boldsymbol{u}}) \in Col(A).$$

$$T(\{\boldsymbol{u} + NulA\}) = T(\boldsymbol{u}).$$

As sets,

## Wed Oct 24

• 4.9 supplement: Google page rank

Announcements: We are where we are.

- · today: start 94.9.
- · Friday: finish 4.9 -> google page rank

Warm-up Exercise: Do the "small example" of the geometry related to the 4 fundamental subspaces of a matrix, in Monday's notes