Math 2270-002 Week 9 notes
We will not necessarily finish the material from a given day's notes on that day. We may also add or

subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes cover material in 4.5, 4.6,4.9, 5.1-5.2.

Mon Oct 22
« 4.5,4.6 Finish general theorems about finite dimensional vector spaces, bases, spanning sets,

linearly independent sets and subspaces from 4.5; and complete the discussion of the four fundamental
subspaces, from 4.6.
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Monday Review!

We've been studying vector spaces, which are a generalization of R”. They occur as subspaces of R”; also
as vector spaces and subspaces of matrices, and of function spaces, for example. There are general
theorems for vector spaces having to do with questions of /inear independence, span, basis, dimension
that we already understand well for R”. We ended Friday in the midst of a discussion of these theorems,
and we'll complete that discussion in Part 1 of today's notes.

We've also been studying and using linear transformations T : V— W between vector spaces, which are
generalizations of matrix transformations 7 : R? — R given as T(x) = A x. A particularly useful linear

transformation once if we have a basis B = { Ql , QZ, Qn } for any vector space V' is the coordinate
transformation isomorphism:

T(y)=[x]y

T:V—-R".

The coordinate transformation and its inverse function are helpful because they allow us to translate
questions about linear independence and span in V into equivalent questions in R”?, where we already have
the tools to answer those questions.

For an m x n matrix 4 we've studied the subspaces Nul 4 & R* and Col A S [R™, which are the kernel
and range of the associated linear transformation 7'(x) = 4 x, 7 : R =R On Friday we introduced two
more subspaces connected to the geometry of the matrix transformations 7'(x) = 4 x. There are Row A4

and Nul A”. We'll complete the discussion of the four fundamental subspaces associated to matrix
transformations in Part 2 of today's notes; we'll see how Row 4 and Nul A are related to a decomposition

of the domain R” of 7, which is analogous to how Col 4 = row(AT) and Nul A" decompose the codomain
R,
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There is a circle of ideas related to linear independence, span, and basis for vector spaces, which it is good
to try and understand carefully. That's what we'll do today. These ideas generalize (and use) ideas we've
already explored more concretely, and facts we already know to be true for the vector spaces R”. (A
vector space that does not have a basis with a finite number of elements is said to be infinite dimensional.

For example the space of all polynomials of arbitrarily high degree is an infinite dimensional vector space.
We often study finite dimensional subspaces of infinite dimensional vector spaces.)

Theorem 1 (constructing a basis from a spanning set): Let } be a vector space of dimension at least one,

and let span{zl,yg, gp}= V.

Then a subset of the spanning set is a basis for V. (We followed a procedure like this to extract bases for
Col A.)
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Theorem 2 Let V be a vector space, with basis = { b.b, ..b } Then any set in } containing more

than n elements must be linearly dependent. (We used reduced row echelon form to understand this in R”.)
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Theorem 3 Let V be a vector space, with basis = {Ll, 22, Ln } Then no set o0 = {gl, a,, .. gp} with

p < nvectors can span V. (We know this for R”.)
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independent vectors that don't span V. Then p < n, and additional vectors can be added to the set o to
create a basis { 4,4 4,4, } (We followed a procedure like this when we figured out all the

subspaces of R3.)

Theorem 4 Let V be a vector space, with basis = {b b, .. Ln } Leto = {gl, a,, .. gp} be a set of

lf‘ A er(sl,\"l- S pan, all 5&\/) ?(cL ou,\a a

- ot tn 5 pan o

(bud = V)
C la/\.l'w ! ~Nw X = - =

< °t| ) qL) ""af 5 q—i’h’k is Q'I"n ('AA-&F‘V\JD""_'L\
qu ¢ W 7 k
OLL(A.L‘,.G(L“C‘—% 1—‘\'{'\""

- ~ - o~ —J
.+ a =
% €9, + 4R + <?°~f* th Pey O
C '\- l.. =
ase A =0 Haw .

0
P
=0

b))

-
C,&,+qa, +~ t
<o also Fné\/\ ¢ = -:r
So {77 - 7 1

Tl‘\PV\J-W-"Z St “O\J‘ho’k IS ™
o f<h. cae f ¢ #0 Han o ¥
N
Cov\‘l\‘w«ﬂ 'J\.V\FI."l . Il —'C"H : "‘quL —cru ?
s vedors Rl o besis N g by
L«ﬁ\«f e F;cht\.
=

Q?H NoT iw srw—, od



Theorem 5 Let Let 7 be a vector space, with basis = {Ql, b, ..b, } Then every basis for } has exactly
n vectors. (We know this for R”.)
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Theorem 6 Let Let V' be a vector space, with basis § = {LI,LQ, Qn} If a= {gl,gz, Qn} is
another collection of exactly » vectors in V, and if span { 4,4, .4, } =V, then the set o is automatically

linearly independent and a basis. Conversely, if the set { a,.4, .4 } is linearly independent, then
span { 4,4, .4 } = Vis guaranteed, and o is a basis. (We know all these facts for " from reduced
row echelon form considerations.)
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Corollary Let Let V' be a vector space of dimension n. Then the subspaces of /" have dimensions
0,1,2,.n—1,n (Weknow this for R”".)

Remark We used the coordinate transformation isomorphism between a vector space V' with basis

B= { b T’ QQ, Qn } for Theorem 2, but argued more abstractly for the other theorems. An alternate
(quicker) approach is to just note that because the coordinate transformation is an isomorphism it preserves
sets of independent vectors, and maps spans of vectors to spans of the image vectors, so maps subspaces
to subspaces. Then every one of the theorems above follows from their special cases in R”?, which we've
already proven. But this shortcut shortchanges the conceptual ideas to some extent, which is why we've

discussed the proofs more abstractly.



