
Math 2270-002  Week 9 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  4.5, 4.6, 4.9,  5.1-5.2.

Mon Oct 22
       4.5, 4.6  Finish general theorems about finite dimensional vector spaces, bases, spanning sets, 
linearly independent sets and subspaces from 4.5; and complete the discussion of the four fundamental 
subspaces, from 4.6.
     

Announcements: 

Warm-up Exercise:
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Monday Review!   

We've been studying vector spaces, which are a generalization of n.  They occur as subspaces of n; also
as vector spaces and subspaces of matrices, and of function spaces, for example.  There are general 
theorems for vector spaces having to do with questions of linear independence, span, basis, dimension 
that we already understand well for n.  We ended Friday in the midst of a discussion of these theorems, 
and we'll complete that discussion in Part 1 of today's notes.  

We've also been studying and using linear transformations T : V W between vector spaces, which are 
generalizations of matrix transformations T : n m given as T x = A x.  A particularly useful linear 
transformation once if we have a basis = b1, b2,  ... bn  for any vector space V is the coordinate 
transformation isomorphism:

T v = v

T : V n.

The coordinate transformation and its inverse function are helpful because they allow us to translate 
questions about linear independence and span in V into equivalent questions in n, where we already have 
the tools to answer those questions.

For an m n matrix A we've studied the subspaces Nul A n and Col A m, which are the kernel 
and range of the associated linear transformation T x = A x, T : n m.  On Friday we introduced two 
more subspaces connected to the geometry of the matrix transformations T x = A x.   There are Row A 
and Nul AT.  We'll complete the discussion of the four fundamental subspaces associated to matrix 
transformations in Part 2 of today's notes;  we'll see how Row A and Nul A are related to a decomposition 
of the domain n of T, which is analogous to how Col A = row AT  and Nul AT decompose the codomain

m.

J cbi t g t t tenthC V
Ci Ip E IR



There is a circle of ideas related to linear independence, span, and basis for vector spaces, which it is good 
to try and understand carefully.  That's what we'll do today.  These ideas generalize (and use) ideas we've 
already explored more concretely, and facts we already know to be true for the vector spaces n.    (A 
vector space that does not have a basis with a finite number of elements is said to be infinite dimensional.  
For example the space of all polynomials of arbitrarily high degree is an infinite dimensional vector space.  
We often study finite dimensional subspaces of infinite dimensional vector spaces.)

Theorem 1  (constructing a basis from a spanning set):  Let V be a vector space of dimension at least one, 
and let  span v1, v2,  ... vp = V.  
Then a subset of the spanning set is a basis for V.   (We followed a procedure like this to extract bases for 
Col A.)

Theorem 2  Let V be a vector space, with basis = b1, b2,  ... bn .  Then any set in V containing more 
than n elements must be linearly dependent. (We used reduced row echelon form to understand this in n.)
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Theorem 3  Let V be a vector space, with basis = b1, b2,  ... bn .  Then no set  = a1, a2,  ... ap  with 
p n vectors can span V.  (We know this for n.)  

Theorem 4  Let V be a vector space, with basis = b1, b2,  ... bn .  Let  = a1, a2,  ... ap  be a set of 

independent vectors that don't span V.  Then p n, and additional vectors can be added to the set  to 
create a basis  a1, a2,  ... ap, ... an   (We followed a procedure like this when we figured out all the 
subspaces of 3.)
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Theorem 5  Let Let V be a vector space, with basis = b1, b2,  ... bn .  Then every basis for V has exactly
n vectors.   (We know this for n.)

Theorem 6   Let Let V be a vector space, with basis = b1, b2,  ... bn .  If    = a1, a2,  ... an  is 

another collection of exactly  n vectors in V, and if  span a1, a2,  ... an = V, then the set  is automatically
linearly independent and a basis.  Conversely, if the set a1, a2,  ... an  is linearly independent, then 

span a1, a2,  ... an = V is guaranteed, and  is a basis.  (We know all these facts for n from reduced 
row echelon form considerations.)
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Corollary   Let Let V be a vector space of dimension n.  Then the subspaces of V have dimensions 
0, 1, 2,...n 1, n.  (We know this for n.)

Remark  We used the coordinate  transformation isomorphism between a vector space V with basis 
= b1, b2,  ... bn  for Theorem 2, but argued more abstractly for the other theorems.  An alternate 

(quicker) approach is to just note that because the coordinate transformation is an isomorphism it preserves
sets of independent vectors, and maps spans of vectors to spans of the image vectors, so maps subspaces 
to subspaces.  Then every one of the theorems above follows from their special cases in n,  which we've 
already proven.  But this shortcut shortchanges the conceptual ideas to some extent, which is why we've 
discussed the proofs more abstractly.


