Wed Nov 7
« Appendix B, the Complex plane C. Brief review for exam 2.
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Complex number algebra and geometry.
Appendix B of text
November 7

C:={a+bila,b €ER andi* =-1}

Arithmetic: Ifz=a+ bi andw=c + di then

z=w ifandonlyifa=cand b=d.
z+w:=(a+c)+ (b+d)i
(a4 b)(c4dy) = zw:i= (ac—bd)+ (ad+bc)i

Focusing on just addition and real-number scalar multiplication, C can be thought of as a real vector space

of dimension 2. In this case, the natural basis is § = {1, i}. Then the coordinate transfromation is an
isomorphism with [R2:

a

z=a+ bi, [Z]B: b

If we identify complex numbers with these coordinates in R2, we get the "complex plane" representation of
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Exercise 1a) Illustrate that complex number addition corresponds to vector addition in the complex plane,
i.e. in the R? coordinate plane that we have identified with C as above. Use some of the points labeled
above. Also, that real scalar multiplication corresponds to scalar multiplication in the R? coordinate plane.

1b) We define the modulus of z=a + bitobe|z| =/ a* + b* . Note that this is just the magnitude of
the coordinate vector [a, b ]T. Compute the modulus of some of the vectors in the diagram above.
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Interesting geometry starts happening when you combine the geometry of the complex planeg with
algebraic operations such as complex multiplication.

Exercise 1 Define the transformation 7 : C— C by the formula
re. T'(x+iy)=i(x+iy)=-y+ix ¢ read
la) Verify that this is a linear transformation of C.
D) Thew) = <(24w) = (2 +iw = TRI+TW) () Tl)=
1b) Describe T geometrically, in terms of its effect in the (x, y) coordinate plane. Include the matrix for 7 1 ¢ 3
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Exercise 2 Leta, b € R. Define the linear transformation 7" : C— C by the formula

T(z)=(a+bi)z, ie.T(x+iy)=(a+bi) (x+iy).
2a)
Verify that this is a lmear transformatlon of C.

SQM as i

2b) Describe T geometrically, in terms of its effect in the (x, ) coordinate plane. Include the matrix for 7
with respect to the basis B = {1, i}.
Describe T geometrically, in terms of its effect in the (x, y) coordinate plane which we have identified with
C. Include the matrix for 7 with respect to the basis B = {1, 7}. It should look familiar.
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An important algebraic operation for complex numbers is conjugation:

Definition: Letz =x + iy. Then the conjugate of z,Z := x — i y. Geometrically this is a reflection in the
complex plane, across the x-axis. But the major uses of conjugations are algebraic:

Exercise2 Letz=x+ iy, w=u + ivbe complex numbers. Then

2a) |z|>=zZ.
b)Zw =Zw.
2¢) zw=0 ifand only if z=0orw=0.

z

1 1
2d) Ifz # 0 then — exists (i.e. the multiplicative inverse), in fact, — = —-.
z z |2‘



Geometric meaning of complex multiplication:

We use the polar form of complex numbers, which corresponds to polar coordinates in the R? coordinate
plane.

Letz=a + b i
Letr=yd" +b =|z|.
Then
a b :
zZ=r + I
Ja + b Ja + b ]
z=r (cos © + isin 0) o
where 0 is the polar coordinate angle. vb T o+ by
r
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r X
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Multiplication!! If
z=a+ bi=r (cos O + isin @)
w=c+di=p (cose + ising )

Then
zw= r(cos® + isin®)p (cos ¢ + isin ¢ )

zw =rp [(cosOcos ¢ -sinBsine) + i(cosOsin@ + sinOcos @) |
zw=rp [cos (64 @) + isin (06+ ¢)]

upshot: when you multiply two complex numbers, their moduli are multiplied, and their polar angles are
added!

Remark: Using Euler's formula that e'®=cos 0 + isin O the computation above may be expressed as:
If

z=re® andw=pe®
then
zw=re’epe”p=rpelee’q’=rpe’(e+q’) .



Exercise4- Play with complex multiplication algebraically (using the rectangular coordinates of complex
numbers) and geometrically (using their polar forms and the previous page).
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Topics/concepts list for exam 2

4.1 vector spaces and sub vector spaces (subspaces) - abstract definitions.
realization of subspaces as null spaces or as spans of collections of vectors
how to check if a subset is a subspace.
examples such as polynomial vector spaces, matrix vector spaces, ", and subspaces of all of these.

4.2 Nul A and Col A for T'(x) = A x; Kernel T and Range T for general linear transformations 7 : V—W
how to find Nu/ A and Col A, and bases for each.

4.3 linearly independent/dependent sets; bases for vector spaces (including subspaces).

how to check whether the vectors in a set span a vector space.

how to check whether a set of vectors is linearly independent.

how to build up bases as growing sets of independent vectors, one vector at a time, until the set
spans.

how to cull dependent vectors from a spanning set, until it is an independent set.

4.4 every basis of n vectors for a vector space V' yields a coordinate system, via the coordinate
isomorphism with R” .

answering questions about span and linear independence for sets of vectors in /by using coordinates
with respect to a basis.

favorite examples include P, Mm < the polynomial and matrix spaces.

4.5 dimension of a vector space. basic facts about dimension, number of vectors required to span,
maximum number of independent vectors, dimensions of subspaces.

4.6 rank of a matrix. rank + nullity theorem.
connection to reduced row echelon form of the matrix.

how to find Row A, Nul AT
what Nul A, Row A, Col A, Nul AT have to do with the geometry of the transformation 7'(x) = 4 x.

4.9 Markov chains, stochastic and regular stochastic matrices, steady-state vector, google page rank ideas.

5.1-5.2 eigenvalues and eigenvectors. Finding eigenvalues via the characteristic equation
det(A4 -\ I) = 0 ; finding eigenspace bases.

5.3 Diagonalizable and non-diaglonalizable matrices. Algebraic consequences, e.g. computing large
powers of diagonalizable matrices.

5.4 Matrices of linear transformations, given domain and codomain bases; change of basis for matrix
transformations using "better bases".

Improved understanding of the transformation 7'(x) = 4 x in terms of R” basis made out of
eigenvectors, as compared to the standard basis.



5.5 Complex eigendata. Finding complex eigenvalues and eigenvectors, especially for 2 x 2 matrices;
rotation-dilation matrices.

computations '

fluency in the defintions and concepts

ability to create examples illustrating definitions and concepts

ability to discern whether statements are true or false, based on the material we've covered.
use of material from Chapters 1-3 that relates to Chapters 4-5.



