Math 2270-002 Week 14 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes cover material in 6.6-6.8, 7.1-7.2

Mon Nov 26
« 6.6-6.7 Power laws and least squares for log-log data; introduction to inner product spaces.
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Review and preview:

On Wednesday before Thanksgiving we were discussing Section 6.6, Applications to linear models,
which discusses how least squares solutions to linear systems, Section 6.5, are applied to linear models
in experimental sciences and statistics. Today (on Monday) we'll apply these ideas to power laws, by
looking at an example related to Kepler's Laws. The Matlab scripts should be helpful for your homework
problem this week about a height-weight power law for humans.

Then in the rest of Monday's class and thru Wednesday we'll discuss Section 6.7-6.8, Inner product
spaces and applications. Inner product spaces are vector spaces which additionally pocess the algebraic
equivalent of the [R” dot product. As a result, inner product spaces have analgous geometry related to
orthogonality, projection, angles. These ideas have amazing applications, for example to Fourier series
(important in applied mathematics and physics) and as a fun and recent special case, image and audio
compression algorithms.

On Friday we'll begin Chapter 7, which is about "The Spectral Theorem" and its applications. The spectral

theorem is the fact that symmetric matrices 4 (ones for which A= A) are always diagonalizable, and with
real eigenvalues, and furthermore so that the R” eigenbasis can always be chosen to be ortho-normal.
There are many interesting and important applications of the Spectral Theorem and we should have time to
discuss some of them in the remaing days of our course.
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Astronomical example As you may know, Isaac Newton was motivated by Kepler's (observed) Laws of
planetary motion to discover the notions of velocity and acceleration, i.e. differential calculus and then
integral calculus, along with the inverse square law of planetary acceleration around the sun.....from which
he deduced the concepts of mass and force, and that the universal inverse square law for gravitatonal
attraction was the ONLY force law depending only on distance between objects, which was consistent
with Kepler's observations! Kepler's three observations were that

(1) Planets orbit the sun in ellipses, with the sun at one of the ellipse foci.

(2) A planet sweeps out equal areas from the sun, in equal time intervals, independently of where it is in
its orbit.

(3) The square of the period of a planetary orbit is directly proportional to the cube of the orbit's semi-
major axis.

So, for roughly circular (elliptical) orbits, Keplers third law translates to the statement that the period P is

related to the radius 7, by the equation P= b y! '5, for some proportionality constant 5. (And b = 1 in earth-
centric units below.) Let's see if that's consistent with the following data:

Planet mean distance r from sun Orbital period t
(in astronomical units where 1=dist to earth) (in earth years)

Mercury 0.387 0.241

Earth 1. 1.

Jupiter 5.20 11.86

Uranus 19.18 84.0

Pluto 39.53 248.5

The Matlab script works with this data and first finds the least squares fit to the log-log data. Then it
creates two figures, the first of which is the linear regression line plotted along with a scatter plot of the
adata. The second plot is the graph of the power law for the period as a fu ct10n of adlus

@0 ng with a scatter plot of the original radius vs. period data. WA« \>

Step 1: Matlab is finding the least squares solution to the In-In data, Y =m X + B (see next page).
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Step 1:

spower laws example, with Kepler's laws:
* radii=[.387; 1; 5.2; 19.18; 39.53] %units=multiples of earth radius
. periods=[.241; 1; 11.86; 84; 248.5] %units=multiples of earth period
% vectors containing the (natural) "log" of the origional ones:

log_radii=log(radii)
log_periods=log(periods)
% first column of A is log of radii, second column is '"ones"

A=[log_radii,ones(5,1)]

(%Matlab automatically computes least squares solution, which will be [m,b]’
ansl=linsolve(A, log_periods)
power=ansl(1l) %extract slope "m", which will be power law power
intercept=ans1(2) %extract intercept "b"; Power law is P=exp(b)xr~m.
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steps 2, 3: figure with linear regression line and log-log data; and figure with original data and power law

graph.

last portion of Matlab script:

outputs:

(| JON
File Edit

Ddde B

log(P)

figure(1)

log_r=linspace(-2,4,100)

scatter(log_radii, log_periods, 'red')
xlabel('log(r)")

ylabel('log(P)")

title('orbital log radius vs log period line fit')
hold on

plot(log_r,ansl(2)+ans1l(1)xlog_r, 'black")

hold off

figure(2)

r=1linspace(0,40,100)

scatter(radii,periods, 'red')

xlabel('r")

ylabel('P")

title('orbital radius vs period power law fit')

hold on

% the "r." applies the power to each entry of the vectors of r's.
plot(r,exp(intercept)*r.”~power, 'blue')

hold off
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Examples of function space inner products:
V={f:[a,b]>Rs.t.f is continuous } :== C([a, b]).
b

(f,g) = J f(2) g(¢t)dt (or some fixed positive multiple of this integral).

a

Exercise 1) Check the algebra requirements a), b), c¢) for an inner product.
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This inner product ( f, g) is not so different from the R” dot product if you think of Riemann sums: Let
At=b_a; tj=a+]At,]=1,2,..n.
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Example For the inner product on C[ -1, 1] given by
1

(e = | S a

-1
If one applies Gram-Schmidt to the the set { 1, ¢ tz, t3, } one creates the (normalized) Legendre
polynomials which have an interesting entry at Wikipedia. Projecting a continuous function f onto

Wn =Span{1, t, 12, tn}
will create polynomi¢al approximations, that improve in the sense that
. . 2
m Hf— projy, f ‘ =0.
n

ind the first three Legendre polynomials by using Gram-Schmidt on the functions

(K =1h0=tp0)="~)
(In your homework you will carry this one step further.)

“&I“Z - <§|>£_'> h S\l'\ At

"
P
o
i
Ny

IR S | o :\\%—L.\\: %
% =%~ (LR w= &
=§,-<hBIO g 1
£ 0 <E )= Lt dt =06
A fz 2

—~ - —_ ,_L T 3‘,‘\?"\}»
"‘1)"‘7:18 _{\E ’ ,%_;n’i /% gnpk 4

1o he Ui A -




