
Math 2270-002  Week 13 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in  6.4-6.6 

Mon Nov 19
       6.4   Gram Schmidt and A = QR decomposition.  Orthogonal matrices

Announcements: 

Warm-up Exercise:
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We begin on Monday with a continuation of the discussion of Gram-Schmidt orthogonalization from 6.4.  
Keeping track of the G.S. process carefully yields the A = QR matrix product decomposition theorem, 
where Q is an "orthogonal matrix" consisting of an orthonormal basis for the span of the columns of A and
R is an upper triangular matrix with positive entries along the diagonal.  This decomposition is one way to 
understand why matrix determinants correspond to  Volumes, in n, and can also be useful in solving 
multiple linear systems of equations with the same "A" matrix more efficiently.

Section 6.5, Least square solutions is about finding approximate solutions to inconsistent matrix 
equations, and relies on many of the ideas we've been studying in Chapter 6 up to this point.  Whenever 
one tries to fit experimental data to finite dimensional models it is extremely unlikely that one will get an 
exact fit.  Least squares solutions are the "best possible", and for this reason software like Matlab 
automatically returns the least squares "solution" when aske to solve an inconsistent system.

Section 6.6, Applications to linear models, is an application of the least squares method to e.g. single or 
multivariate linear regression in statistics.  
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Recall the Gram-Schmidt process from Friday:

Start with a basis B  = w1, w2, ... wp  for a subspace W of n.   How can you convert it into an 
orthonormal basis?  Here's how!  The inductive process is called Gram-Schmidt orthogonalization.

Let W1 = span w1 .  Define  u1 = 
w1

w1
.  Then u1  is an orthonormal basis for W1.

Let W2 = span w1, w2 = span u1, w2 .

     Let z2 = w2 projW
1
w2 =  w2 w2 u1 u1  so z2 u1.

     Define u2 = 
z2
z2

.   So u1, u2  is an orthonormal basis for W2.



Let W3 = span w1, w2, w3 .

     Let  z3 = w3 projW
2
w3,   so z3  W2.

     Define u3 = 
z3
z3

.  Then u1, u2, u3   is an orthonormal basis for W3.

Inductively,

Let  Wj = span w1, w2, ... wj  = span u1, u2,  ...  uj 1, wj .

     Let zj = wj  projW
j 1

 wj  = wj  wj u1 u1   wj u2 u2    ... wj uj 1 uj 1    .

     Define  uj = 
zj
zj

.   Then u1, u2, ... uj   is an orthonormal basis for Wj .

Continue up to j = p.



Exercise 1  Perform Gram-Schmidt on the 3 basis

B =

1

1

0
,

0

4

0
,

1

2

3
.

This will proceed as the Friday exercise until the third step, i.e.

u1 =
1

2

1

1

0
,  u2 =

1

2

1

1

0
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A = Q R decomposition:   

We're denoting the original basis for W by B  = w1, w2, ... wp .  Denote the orthonormal basis we've 
constructed with Gram-Schmidt by O = u1, u2, ... up  .  Because O is orthonormal it's easy to express 
these two bases in terms of each other.  Notice

Wj = span w1, w2, ... wj  =  span u1, u2, ... uj       for each 1 j p.

So,
w1 = w1 u1 u1 

w2 = w2 u1 u1  w2 u2 u2 
:

wj = wj u1 u1  wj u2 u2  ....   wj uj uj 
:  

wp =
l = 1

p

wl ul ul  .

Notice that the coefficients of the last terms in the sums above, namely wj uj  can be computed as

wj uj = zj
zj
 zj

=  zj .

In matrix form (column by column) we have

Thus any matrix with linearly independent columns may be written in factored form as above, (
W = Col A ,

An p = Qn p Rp p.

This factorization contains geometric information and can simplify the computational work needed to solve
matrix equations A x = b.
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From previous page...
                An p = Qn p Rp p

shortcut  (or what to do if you forgot the formulas for the entries of R)  If you just know Q you can 
recover R by multiplying both sides of the  equation on the previous page by the transpose  QT of the Q 
matrix:

A = Q R
QTA = QTQ R = I R = R.  

Example)   From last Friday, 

B = 
1

1
,  

0

4
,   O = 

1

2

1

2

,  

1

2

1

2

  .

1 0

1 4
 =  

1

2

1

2

1

2

1

2

w1 u1 w2 u1

0 w2 u2
 = 

1

2

1

2

1

2

1

2

2 2 2

0 2 2
 = Q R .

Exercise 2)   Verify that R could have been recovered via the formula 
QT A = R

QT A Q Q R

QTQ I because
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From previous page ...

1 0

1 4
 =  

1

2

1

2

1

2

1

2

2 2 2

0 2 2
.

Exercise 3)  Verify that the A = Q R factorization in this example may be further factored as

 
1 0

1 4
= 

1

2

1

2

1

2

1

2

2 0

0 2 2

1 2

0 1
.

   So, the transformation T x  = A x is a composition of (1) an area-preserving shear, followed by (2) a 

diagonal scaling that increases area by a factor of 2 2 2 = 4, followed by a rotation of 
4

, which does

not effect area.  Since determinants of products matrices are the products of determinants (we checked this 
back when we studied determinants), and area expansion factors of compositions are also the products of 
the area expansion factors, the generalization of this example gives another explanation of why the 
determinant of A (or its absolute value in general) coincides with the area expansion factor, in the 2 2 
case.  You show in your homework that the only possible Q matrices in the 2 2 case are rotations as 
above, or reflections across lines through the origin.  In the latter case, the determinant of Q is 1, and the 
determinant of A is negative.
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Example from Exercise 1:.

B =
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Exercise 4a  Find the A = Q R factorization based on the data above, for 

A = 

1 0 1

1 4 2

0 0 3

solution A =

1

2
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2
0

1
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0 0 1

2 2 2
1
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0 2 2
3

2

0 0 3

Exercise 4b  Further factor R into a diagonal matrix times a volume-preserving shear and interpret the 
transformation T x  = A x as a composition of (1) a volume preserving shear, followed by (2) a 
coordinate scaling that increases volume by a factor of 12, followed by a rotation about the x3 axis in 3, 
which preserves volume.  The generalization of this example gives another explanation of why the 
determinant of A (or its absolute value in general) is the volume expansion factor for the transformation 
T x = A x.
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