<u>2h</u>) Refer to the same diagram as in <u>2g</u>, which is an  $\mathbb{R}^n$  picture. Using the Pythagorean triangle with edges  $(\underline{x} \cdot \underline{u})\underline{u}, \underline{z}, \underline{x}$  we have

$$\|(\underline{x} \cdot \underline{u})\underline{u}\|^2 + \|\underline{z}\|^2 = \|\underline{x}\|^2, \text{ i.e.} \qquad \text{from } \overline{z} \perp (\overline{x} \cdot \overline{u})\overline{u}$$

$$(\underline{x} \cdot \underline{u})^2 + \|\underline{z}\|^2 = \|\underline{x}\|^2.$$

The quantity  $\underline{x} \cdot \underline{u}$  is called *the component of*  $\underline{x}$  in the direction of  $\underline{u}$ , and from the formula above,

$$-\|x\| \le \underline{x} \cdot \underline{u} \le \|x\|. \qquad (extreme cases are when  $\|\overline{z}\| \le \delta$ 
i.e.  $\overline{x}$  is already on the line$$

Define the angle  $\theta$  between  $\underline{v}$  and  $\underline{w}$  the same way we would in  $\mathbb{R}^2$ , using the congruent triangle in the figure below, namely

$$\cos(\theta) = \frac{(\underline{x} \cdot \underline{u})}{\|\underline{x}\|}.$$

Notice that  $-1 \le \cos(\theta) \le 1$  and so there is a unique  $\theta$  with  $0 \le \theta \le \pi$  for which the  $\cos \theta$  equation can hold. Substituting  $\underline{\boldsymbol{u}} = \frac{\underline{\boldsymbol{v}}}{\|\underline{\boldsymbol{v}}\|}$  gives the familiar formulas that you learned in multivariable Calculus for  $\mathbb{R}^2$ ,  $\mathbb{R}^3$ , which now holds in  $\mathbb{R}^n$ .

$$\cos(\theta) = \frac{\left(\underline{x} \cdot \frac{\underline{v}}{\|\underline{v}\|}\right)}{|\underline{x}|} = \frac{(\underline{x} \cdot \underline{v})}{\|\underline{x}\| \|\underline{v}\|}, \text{ i.e.}$$
$$(\underline{x} \cdot \underline{v}) = \|\underline{x}\| \|\underline{v}\| \cos(\theta)$$



## Tues Nov 13

• 6.2-6.3 Orthogonal complements, and the four fundamental subspaces of a matrix revisited.

Announcements: o mid tams returned towarrow · short HW due tomorrow

(quiz will involve projection ideas)

a) Compute projex for  $\vec{x} = \begin{bmatrix} -2 \\ 0 \end{bmatrix}$ , using projex =  $(\vec{x} \cdot \vec{u}) \vec{u} = (\vec{x} \cdot \vec{v}) \vec{u} = (\vec{x} \cdot \vec{v}) \vec{u} = (\vec{v} \cdot \vec{v}) \vec{v}$ 

×2\_

0

(1,1)

- b) Find the angle  $\Theta = 4 \vec{x}, \vec{v} = \frac{3}{4} \vec{n}$ Using  $\cos \theta = \frac{\vec{X} \cdot \vec{V}}{\|\vec{x}\| \|\vec{v}\|}$
- c) illustrate
- a)  $\vec{n} = \frac{1}{\sqrt{2}} \left( \vec{n} \frac{\vec{n}}{\sqrt{2}} \right)$  $(\vec{x} \cdot \vec{k}) \vec{k} = (\begin{bmatrix} -2 \\ 0 \end{bmatrix} \cdot \vec{k} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}) \vec{k} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$  $=\frac{1}{2}\left(\begin{bmatrix} -2\\0\end{bmatrix},\begin{bmatrix} 1\\1\end{bmatrix}\right)\begin{bmatrix} 1\\1\end{bmatrix}$ = = = [ [ ] = | -| /
- b)  $\cos \theta = \begin{bmatrix} -2 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{-2}{2\sqrt{2}} = -\frac{1}{\sqrt{2}}$  $\omega_5^{-1}\left(-\frac{1}{\sqrt{2}}\right) = \frac{3}{4}\pi$

Orthogonal complements, and the four subspaces associated with a matrix transformation, revisited more carefully than our first time through.

Let  $W \subseteq \mathbb{R}^n$  be a subspace of dimension  $1 \le p \le n$ . The *orthogonal complement to W* is the collection of all vectors perpendicular to every vector in W. We write the orthogonal complement to W as  $W^{\perp}$ , and say "W perp". Let  $\mathbf{B} = \{\underline{\mathbf{w}}_1, \underline{\mathbf{w}}_2, \dots \underline{\mathbf{w}}_p\}$  be a basis for W. Let  $\underline{\mathbf{v}} \in W^{\perp}$ . This means

$$\left(c_1 \mathbf{w}_1 + c_2 \underline{\mathbf{w}}_2 + \dots + c_p \underline{\mathbf{w}}_p\right) \cdot \underline{\mathbf{v}} = 0$$

for all linear combinations of the spanning vectors. Since the dot product distributes over linear combinations, the identity above expands as

$$c_1(\underline{\mathbf{w}}_1 \cdot \underline{\mathbf{v}}) + c_2(\underline{\mathbf{w}}_2 \cdot \underline{\mathbf{v}}) + \dots + c_p(\underline{\mathbf{w}}_p \cdot \underline{\mathbf{v}}) = 0$$

for all possible weights. This is always true as soon as we check the special cases

$$\underline{\boldsymbol{w}}_1 \cdot \underline{\boldsymbol{v}} = \underline{\boldsymbol{w}}_2 \cdot \underline{\boldsymbol{v}} = \dots = \underline{\boldsymbol{w}}_p \cdot \underline{\boldsymbol{v}} = 0.$$

In other words,  $\underline{\mathbf{v}} \in Nul\ A$  where A is the  $m \times n$  matrix having the spanning vectors as rows:

$$A \mathbf{v} = \begin{bmatrix} & \mathbf{w}_1^T \\ & \mathbf{w}_2^T \\ & \vdots \\ & \mathbf{w}_p^T \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \mathbf{0}.$$

So

$$W^{\perp} = Nul A$$
.

Exercise 1 Find 
$$W^{\perp}$$
 for  $W = span \begin{cases} \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \end{cases}$ .  $\subset \mathbb{R}^3$   $W$  is a plane than  $\overrightarrow{O}$ .

$$\overset{\perp}{\mathbb{X}} \in W^{\perp} \quad \text{ned} \quad \overset{\perp}{\mathbb{X}} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = 0$$

$$\overset{\perp}{\mathbb{X}} \circ \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \circ \begin{bmatrix} 1 \\ 0 \\ -2$$

<u>Theorem:</u> Let A be any  $m \times n$  matrix. Then  $(Row A)^{\perp} = Nul A$ .

$$\vec{x} \in (Row A)^{\perp}$$
 $(\Rightarrow \vec{x} \perp each row q) A (because Row A = span of vors q) A)$ 
 $(\Rightarrow A \vec{x} = \vec{0})$ 

Theorem. Conversely, let 
$$A$$
 be an  $m \times n$  matrix. Then  $(NulA)^{\perp} = Row A$ .

(et rank  $A = r = x$  pivots = dim  $Row A$ . (8 dim  $ColA$ )

dim  $Nul A = n-r = x$  non-pivot orlumns

(et  $\{\overline{z}_1, \overline{z}_2, ... \overline{z}_{n-r}\}$  be a basis for NulA

So,  $\vec{x} \in (NulA)^{\perp}$  iff

$$\begin{bmatrix} \vec{z}_1^{\perp} \\ \vec{z}_2^{\perp} \end{bmatrix} \begin{bmatrix} \vec{x}_1 \\ \vec{x}_2^{\perp} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Corollary Let  $W \subseteq \mathbb{R}^n$  be a subspace. Then  $(W^{\perp})^{\perp} = W \cdot \overline{z}_{n-r}$ 

Just use the two thms

above.

Start with

$$A = \begin{bmatrix} \vec{w}_1^{\perp} \\ \vec{w}_2^{\perp} \end{bmatrix} = n-r \quad \text{, so } r \text{ non-pivot columns}$$

(dim of row space)
$$= \dim (NulA)^{\perp} = r$$

Row  $A \subset (NulA)^{\perp}$ 

be cause  $A \subset (NulA)^{\perp}$ 
 $A \subset (NulA)^{\perp$ 

Exercise 2 For 
$$W = span \begin{cases} \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$
 as in Exercise 1, verify that  $(W^{\perp})^{\perp} = W$ .

$$W^{\perp} = \operatorname{Span} \left\{ \begin{bmatrix} 2 \\ -5 \\ 1 \end{bmatrix}, \\ (W^{\perp})^{\perp} = \operatorname{Nul} \left[ 2 - 5 \right] \right\}$$

$$\dim = 2 \quad (2 \text{ non-pivot arls}).$$

$$\begin{bmatrix} 2 - 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = 0$$

$$\begin{bmatrix} 2 - 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = 0$$

$$50 \quad \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \right\} \text{ are a be this for } (W^{\perp})^{\perp} = W$$