
2h)  Refer to the same diagram as in 2g, which is an n picture.  Using the Pythagorean triangle with 
edges x u u, z, x we have

x u u 2  z 2 =  x 2,  i.e.

x u 2  z 2 =  x 2.

The quantity x u is called the component of x in the direction of u, and from the formula above,

 x  x u   x  .

Define the angle  between v and w the same way we would in 2, using the congruent triangle in the 
figure below, namely

cos = 
x u  
x .

Notice that  1 cos  1 and so there is a unique  with 0  for which the cos  equation 

can hold.  Substituting u =
v
v  gives the familiar formulas that you learned in multivariable Calculus for

2, 3, which now holds in n.

cos =
x v

v  

x =  
x v  
x v , i.e.

x v  = x v  cos   
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        6.2-6.3  Orthogonal complements, and the four fundamental subspaces of a matrix revisited.
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Orthogonal complements, and the four subspaces associated with a matrix transformation, revisited more 
carefully than our first time through.

Let W n be a subspace of dimension 1  p n.  The orthogonal complement to W is the collection 
of all vectors perpendicular to every vector in W.  We write the orthogonal complement to W as W , and 
say "W perp".  Let  B  = w1, w2, ... wp  be a basis for W.  Let v W .   This means

c1w1 
 c2 w2  ... cp wp  v = 0 

for all linear combinations of the spanning vectors. Since the dot product distributes over linear 
combinations, the identity above expands as 

c1 w1 v c2 w2 v   ... cp wp v  = 0
for all possible weights.  This is always true as soon as we check the special cases 

w1 v = w2 v = ... = wp v = 0.

In other words, v  Nul A where A is the m n matrix having the spanning vectors as rows:

 A v = 

     w1
T      

w2
T

:

wp
T

v1

v2

:

vn

 =  0.

So
W = Nul A.

Exercise 1  Find W  for W = span
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Theorem:  Let A be any m n matrix.  Then Row A = Nul A.   

Theorem.  Conversely, let A be an m n matrix.  Then Nul A  = Row A.  

Corollary  Let W n be a subspace.  Then  W = W .

I C RowA t
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Exercise 2  For W = span

1

1

3
,  

1

0

2
 as in Exercise 1, verify that W = W.
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