2h) Refer to the same diagram as in 2g, which is an R” picture. Using the Pythagorean triangle with
edges (x*u)u, z, x we have

w2 +lzp=llxp, e o froe 2 L C,z.,;;);’
£o
(o) +zl*=llxp &

The quantity x * u is called the component of x in the direction of u, and from the formula above,

Axl<xem< el (exbvene casts o whn (7 |0

€. X ¢ A\reao\b o~ Hu lllb\e

Define the angle 6 between y and w the same way we would in [R2, using the congruent triangle in the
figure below, namely

Notice that -1 < cos(0) < 1 and so there is a unique 8 with 0 < 6 < 7 for which the cos 8 equation
can hold. Substituting u = L

L2 gives the familiar formulas that you learned in multivariable Calculus for
k2, R3, which now holds in IR;.
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+ 6.2-6.3 Orthogonal complements, and the four fundamental subspaces of a matrix revisited.
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Orthogonal complements, and the four subspaces associated with a matrix transformation, revisited more
carefully than our first time through.

Let W = R” be a subspace of dimension 1 < p < n. The orthogonal complement to W is the collection
of all vectors perpendicular to every vector in . We write the orthogonal complement to # as W + , and
say "W perp". Let B = {&1,%, mp} be a basis for . Lety € W + . This means

<cw

" +czm2+...+cpw )-EZO

P

for all linear combinations of the spanning vectors. Since the dot product distributes over linear
combinations, the identity above expands as

cl(m1 -z) +cz(m2 -2) + .. +cp(mp -2) =0
for all possible weights. This is always true as soon as we check the special cases

In other words, ¥ € Nul A where A4 is the m X n matrix having the spanning vectors as rows:

T 1.
u, v,
Ay= wo | -0
WT vn
w,
So
WL =NulA.
1 1 3 N
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Theorem: Let A be any m x n matrix. Then (Row A) + = Nul A.
L
&S XL eack ron g A ( bteanse RowA = Sf&hfb VoS 'bA>

= A3

Theorem. Conversely, let 4 be an m x n matrix. Then (Nul A) - = Row A.
(l+ ranle A=y =% \>“w\'$ = dow Ror A (&AAW\(/T{A)
dive NG A = 0=t = # wonpivol el
ulr %E' 2 .. ?L:M:i be a Eo&f\‘s ‘F“"L N A

So, Re(NaAY™  iff [ %‘} ]’;‘ =[3}

Corollary Let W S R” be a subspace. Then (W )+ = W.z A
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Exercise 2 For W= span| as in Exercise 1, verify that (W 1) = = w.

Wl - s‘mv\{ -,25}‘
(W) = Nt (2 -3 )
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