Math 2270-002 Week 15 notes
We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we

plan to cover. These notes cover material in 7.1-7.2, with forays into applications and latter sections of
Chapter 7

Mon Dec 3

7.1-7.2 Diagonalizing quadratic forms and surfaces and curves defined implicitly with quadratic
equations, via the spectral theorem continued; spectral decomposition Theorem (section 7.1) - with hints
of Professor Tom Alberts' presentation tomorrow on "Principal Component Analysis" (PCA), and its uses
with dimension reduction ,for "covariance matrices" of large data sets. (See e.g. Wikipedia.) Professor
Alberts' lecture will tie in to a ground-breaking 2008 paper in "Nature", which foreshadows the
subsequent rise of genetric geneology, i.e. the methods with which one can estimate where on earth an
individual's long ago ancestors lived.

"Genes Mirror Geography in Europe"

https://www .ncbi.nlm.nih.gov/pmc/articles/PMC2735096/
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Recall from Friday ...

Spectral Theorem Let 4 be an n x n symmetric matrix. Then all of the eigenvalues of 4 are real, and there
exists an orthonormal eigenbasis B = { u,u,..u } consisting of eigenvectors for 4. Eigenspaces with

different eigenvalues are automatically orthogonal to each other. If any eigenspace has dimension greater
than 1, its orthonormal basis may be constructed via Gram — Schmidt. (We proved parts of the spectral
theorem on Friday.)

One application, as discussed on Friday:
Diagonalization of quadratic forms: Let

n
O(x)= 2 a,xx =x'dx

ij=1
for a symmetric matrix 4, with real entries. 4 symmetric = by the spectral theorem there exists an
orthonormal eigenbasis B = {ll’ u,..u }
-n

For the corresponding orthogonal matrix

AP=PD
D=P' 4P,

where D is the diagonal matrix of eigenvalues corresponding to the eigenvectors in P. So for the change
of variables

where y= [x]g and P= PE < B, we have

O(x)=x"Ax

=y PAPy=y'D y

:zx’iy?'

i=1

So by the orthogonal change of variables all cross terms have been removed. Applications include conic
curves, quartic surfaces, multivariable second derivative test, singular value decomposition theorem, and
more.



Example Identify and sketch the surface defined implicitly by
typ°
<«
x% + x§+2x§ - 2x1 Xy - 4x1x3 - 4x2x3=8.

Exercise 1) Find the symmetric matrix so that
2 2 /;lﬂw T
X, + X, +2x3 - 2x1 X, - 4)c1 Xy - 4)62)63 = x Ax.

Recall that

n

T
X Ax = Z a..x.x..

- .2 ryrj
i,j=1
qll’(\xz * q},\)(l-x\ = ~2"(\xm
["\ Xy x'g_) |~ ~7 o
S S B

If we found the matrix correctly technology tells us that

1 -1 -1
E, __, =span L |, E, _, =span I |t E, _, =span -1
1 0 2

(positively oriented in this order) w
L



2 2 2 _
X +x2-|f2x3 - 2x1x2 - 4x1x3 - 4x2x3—8

For
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J3ioJ2 Je
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o, 2 AP=PD
V3 J6 | PTAP=D.
PlAP=D
Or T .
ot T s P=(P]
E<h

237 + 2y +4)5=8.

One can try to sketch this in the rotated coordinate system. It's an elliptic hyperboloid of one sheet. :-)
Note: You only need to know the eigenvalues to sketch the surface in the new coordinate system.
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In the original coordinate system we see indications of the rotated one:
> with (plots) :
implicilplot.?d(xf + xg + 2-x§ — 2~x1 "Xy = 4~x1 X, — 4-x2x3 =8, X, =-5..5, X, =-5..5, X, =-5

5, grid = 20, 20,20]);

eigenvalues{{1,-1,-2},{-1,1,-2},{-2,-2,2}} 8

B @ EH oy = Browse Examples & Surprise Me

Input
1 -1-2
eigenvalues [—l 1 —2’
-2 -2 2

Open code

Results [ Step-by-step solution

Corresponding eigenvectors: [ Step-by-step solution
vi=(-1,-1,2)

v, =(1,1, 1)

v;=(-1,1,0)



from Wikipedia, "quadric surfaces". There is also a Wikipedia page on conic sections.

Non-degenerate real quadric surfaces
2 2 2
. . T Y z
Ell d i z_ i —
ipsoi 2 —+ b2 + - 1
2 2
Elliptic paraboloid LY _._o0
a? b2
) ) z2 yz
Hyperbolic paraboloid - =2 =0
a? b2
2 2 2
Elliptic hyperboloid of one sheet x —+ vy _z= =1
a? b2 c?
Elliptic hyperboloid of two sheets xr + vy _z = —1
e g




Material we need for Prof. Alberts' guest lecture Tuesday on Principal Component Analysis. (The text
discusses some of this background material in 7.1, 7.2. The text also has a section on PCA in Chapter 7,
although their approach reads differently than the one we will take.)

n

Definition: The quadratic form Q(x) = Z a; XX, = &TA Xx (for 4 a symmetric matrix) is called
ij=1

positive definite if
O(x) >0 forallx #0.

From the preceding discussion, we see that this is the same as saying that all of the eigenvalues of 4 are
positive. If

O(x) >0 forallx #0

then Q is called positive semi-definite. In terms of eigenvalues, this is equivalent to saying all of the
eigenvalues of 4 are non-negative.

Two important examples of positive semi-definite matrices from data analysis: Let {51 Xy X } be n
vectors of data in RVN. (For example, X, could be the vector of "log-heights" from our previous

discussion, and x,, could be the corresponding vector of "log—weights") "Normalize" each vector so that
the average of its entries is zero. In other words, replace each x; with
L=x—ml

where m, is the mean of the entries in X, and 1 is a vector of 1's.

Definition: The covariance matrix A for the data set {5 X, .. X } is the symmetric matrix with

1° =2
a,;=Z;* & Le.

Note, z, * zZ;= || z |l |l 4 || cos el.j where Gl.j is the angle between the vectors z, z; 80 the entries in this

matrix quantify how the two vectors "co-vary" or not. The diagonal entries, suitably normalized, measure
the "variance" of the corresponding z.. The matrix 4 is positive semi-definite because the corresponding

quadratic form satisfies

n

T T-,T T 2
Ole)= 2, a,¢,=c'Ac = (2o)"(Ze) = 1 Ze)” = 0
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The correlation matrix R for the same data set is the matrix with
Yool R

being the correlation coefficient cos ( el.j ) between z. and Z

k= || al fzl =]

An analogous computatiori to the one for the covariance matrix shows that R is positive semidefinite.



Theorem: The "outer product" way of computing the matrix product 4 B. (Section 2.4 topic on partitioned
matrices that we skipped at the time....our usual way is with dot product or rows of 4 with columns of B,
aka an "inner product").

(1) first, notice that the product of an m x 1 column vector with a 1 x n row vector is an m X n matrix;
and the entry in the " row and fh column of the product is the product of the i entry in the column vector
with the fh entry in the row vector. For example:

4 a,b, ab,
az[bl bz]_ ab, ab,
a3 asb, a;b,
(2) Let4 and B__ . Express A4 in terms of its columns, and B in terms of its rows:
m Xp P Xn
o | Ty e
a a a ---b, —--
o ) )
A= 7| B=
] |
o | -~ b,—--
Then
>
=2.a4b .
=k
proof:

Using our usual ("inner product") way of computing matrix products

entry, AB=row (4) - col Z a., kJ'

Compare this to the outer product formula for the ij entry:

p p

» p
entryl.j( ZQ b ] = Z entry z enlry entry = z a . kj
= k=

SAME!!



Spectral decomposition for symmetric matrices. Let4  — be symmetric (and positive semi-definite, for
the applications Prof. Alberts will talk about tomorrow). Order the eigenvalues as

> .= A

A, >, )

and let

U, U, . U
{ 15 —25 b = }
be corresponding orthonormal eigenvectors in R”. Let P be the orthogonal matrix

with
AP=PD
where D is the diagonal matrix with diagonal entries A| = A, > ... A .

Then
A=PDP’
] T
| I T | R
|y u, || 0 A, 0 || ---u)—--
| | | 0 :
| | | 0 0 .. A& l:_
| | | i,
T
_ AMu M, A, STy, o
| | |
| | | g
n

_ T T T
A—klglll +7»2l2£2+m+7&nlnln \

This is the spectral decomposition of A. "Principal component analysis" of covariance or correlation
matrices makes use of the fact that if only a few of the eigenvalues of 4 are large and the rest are near zero,
then the corresponding leading terms in the expression above are a good approximation for the matrix 4.
And projection of the data onto the span of the corresponding important eigenvectors is a good facsimile of
the original data, potentially in a much lower dimensional space.




Testing spectral decomposition in a small example from last week (like one of your homework exercises).
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Example with a covariance matrix. Consider the following fourl\data vectors in R3/\ Note that each data
vector already has mean equal to zero. What is the effective "dimension" of this data set, and in which
directions is the "variance" of the data the greatest? (This is a very small example of "big data". :-))

-2 0 0 2
0 1 -1]] 0
oL |-t 1 []o
2 0 0 || -2
0 0 0 0

a) Verify that the covariance matrix is giveﬁ b)_/

8 0 0 -8] o
- o | -\ o
0 2 -2 0 - o -1 \ o
4- 22 o0 | » 0o 0
-8 0 0 8
b) Verify by observation the following orthogonal eigendata for A:
1 0 1 0
0 1 0 1
E}\ 16 = Span 0 2 EX:4=Span 1 ,Ex_ozspan o Pl
-1 0 1 0
(¢ 6 o 311 o | o L 0 0 O
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2] [o 0 2
0 1 -1 0
original data vectors: {| 0 |, | -1 || 1 || O
2 0 -2
0 0 0
- 0 0 -8
. . 2 -2 0
covariance matrix A = PP
-8 0 0 8
0 1 0
1 0 1
Ex:16=span , Ex:4=span I EX:O=span 1
-1 0 1 0

c¢) Therefore only two of the eigenvectors contribute to the spectral decomposition of 4 (and our data is
really only 2-dimensional, even though the data vectors lie in R5. This is the "dimension reduction" of
PCA.) Verify the spectral decomposition of 4, using the outer product.  ( £:lled n « 5;(,0\, clas ;)
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