
Math 2270-002  Week 15 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes cover material in 7.1-7.2, with forays into applications and latter sections of 
Chapter 7

Mon Dec 3
         7.1-7.2  Diagonalizing quadratic forms and surfaces and curves defined implicitly with quadratic 
equations, via the spectral theorem continued;   spectral decomposition Theorem (section 7.1) - with hints 
of Professor Tom Alberts' presentation tomorrow on "Principal Component Analysis" (PCA), and its uses
with dimension reduction ,for "covariance matrices" of large data sets.  (See e.g. Wikipedia.)  Professor 
Alberts' lecture will tie in to a ground-breaking 2008 paper in "Nature", which foreshadows the 
subsequent rise of genetric geneology, i.e. the methods with which one can estimate where on earth an 
individual's long ago ancestors lived.

"Genes Mirror Geography in Europe"

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2735096/
Announcements: 

Warm-up Exercise:
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Recall from Friday ...

Spectral Theorem  Let A be an n n symmetric matrix.  Then all of the eigenvalues of A are real, and there 
exists an orthonormal eigenbasis B = u1, u2, ... un  consisting of eigenvectors for A.  Eigenspaces with 
different eigenvalues are automatically orthogonal to each other.  If any eigenspace has dimension greater 
than 1, its orthonormal basis may be constructed via Gram Schmidt.    (We proved parts of the spectral 
theorem on Friday.)

One application, as discussed on Friday:
Diagonalization of quadratic forms:  Let 

Q x =
i, j = 1

n

ai j xi xj  = xT A x  

for a symmetric matrix A, with real entries.  A symmetric  by the spectral theorem there exists an 
orthonormal eigenbasis B = u1, u2, ... un .

For the corresponding orthogonal matrix 
P = u1  u2  ...  un 

A P = P D
D = PT A P ,

where D is the diagonal matrix of eigenvalues corresponding to the eigenvectors in P.  So for the change 
of variables

x = P y  

where y = x B  and P =  P E B ,  we have

Q x = xT A x

= yT PTAP y = yT D  y  

= 
i = 1

n

i yi
2 .

So by the orthogonal change of variables all cross terms have been removed. Applications include conic 
curves, quartic surfaces, multivariable second derivative test, singular value decomposition theorem, and 
more.



Example  Identify and sketch the surface defined implicitly by

x1
2  x2

2  2 x3
2  2 x1 x2  4 x1 x3  4 x2 x3 = 8.

Exercise 1)  Find the symmetric matrix so that

x1
2  x2

2  2 x3
2  2 x1 x2  4 x1 x3  4 x2 x3 =  xT A x.

Recall that 

xT A x  = 
i, j = 1

n

ai j xi xj .

If we found the matrix correctly technology tells us that

E
= 2

= span

1

1

1
,  E

= 2
 = span

1

1

0
,  E

= 4
= span

1

1

2
.
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x1
2  x2

2  2 x3
2  2 x1 x2  4 x1 x3  4 x2 x3 = 8 

xT A x = 8

For

P =

1

3

1

2

1

6

1

3

1

2

1

6

1

3
0

2

6

PTA P = D 

xT A x = 8

x = P y

yTP
T
A P y = 8

yT D y = 8 

2 y1
2  2 y2

2 4 y3
2 = 8.

One can try to sketch this in the rotated coordinate system.  It's an elliptic hyperboloid of one sheet.  :-)  
Note:  You only need to know the eigenvalues to sketch the surface in the new coordinate system.
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In the original coordinate system we see indications of the rotated one:

with plots : 
implicitplot3d x1

2 x2
2 2 x3

2 2 x1 x2 4 x1 x2 4 x2x3 = 8, x1 = 5 ..5, x2 = 5 ..5, x3 = 5

..5, grid = 20, 20, 20 ;



from Wikipedia, "quadric surfaces".  There is also a Wikipedia page on conic sections.



Material we need for Prof. Alberts' guest lecture Tuesday on Principal Component Analysis.  (The text 
discusses some of this background material in 7.1, 7.2.  The text also has a section on PCA in Chapter 7, 
although their approach reads differently than the one we will take.)

Definition:  The quadratic form Q x =
i, j = 1

n

ai j xi xj  = xT A x  (for A a symmetric matrix) is called

positive definite if
Q x 0   for all x 0 .

From the preceding discussion, we see that this is the same as saying that all of the eigenvalues of A are 
positive.  If

Q x 0   for all x 0

then Q is called positive semi-definite.  In terms of eigenvalues, this is equivalent to saying all of the 
eigenvalues of A are non-negative.

Two important examples of positive semi-definite matrices from data analysis:  Let x1, x2, ... xn  be n 
vectors of data in N.  (For example, x1 could be the vector of "log-heights"  from our previous 
discussion, and x2 could be the corresponding vector of "log-weights".  "Normalize" each vector so that 
the average of its entries is zero.  In other words, replace each xi with

zi = xi mi1
where mi is the mean of the entries in xi and 1 is a vector of 1's. 

Definition:  The covariance matrix A for the data set x1, x2, ... xn  is the symmetric matrix  with 
ai j = zi zj, i.e.

A =

   z1
T   

   z2
T   

:

   zn
T   

: : ... :

z1 z2 ... zn
: : : :

: : : :

  ZT Z

Note, zi zj = zi  zj  cos i j where i j is the angle between the vectors zi, zj so the entries in this 
matrix quantify how the two vectors "co-vary" or not.  The diagonal entries, suitably normalized, measure 
the "variance" of the corresponding zi.  The matrix A is positive semi-definite because the corresponding 
quadratic form satisfies

Q c = 
i, j = 1

n

ai j ci cj = cT A c = cTZTZ c = Z c T Zc  = Z c 2 0.
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The correlation matrix R for the same data set is the matrix with

 ri j =
zi
zi

 
zj
zj

 

being the correlation coefficient cos i j  between zi and zj.

R =  

   
z1

T

z1
T    

   
z2

T 

z2
T   

:

   
zn

T

zn
T    

: : ... :

z1
z1

z2 

z2
...

zn
zn

: : : :

: : : :

An analogous computation to the one for the covariance matrix shows that R is positive semidefinite.



Theorem:  The "outer product" way of computing the matrix product A B.  (Section 2.4 topic on partitioned
matrices that we skipped at the time....our usual way is with dot product or rows of A with columns of B, 
aka an "inner product").  

(1)  first, notice that the product of an   m 1 column vector with a 1 n row vector is an m n matrix; 
and the entry in the ith row and jth column of the product is the product of the ith entry in the column vector
with the jth entry in the row vector.  For example:

a1

a2

a3

b1 b2  =  

a1 b1 a1b2

a2b1 a2b2

a3b1 a3b2

.

(2)  Let Am p and Bp n.  Express A in terms of its columns, and B in terms of its rows:

  A = 
a1 a2

...
ap

      B =

b1 

b2

:

bp

    .

Then 

A B = 
k = 1

p

ak bk .

proof:  
Using our usual ("inner product") way of computing matrix products,

entryi j A B = rowi A   colj B  = 
k = 1

p

ai k bk j.

Compare this to the outer product formula for the ij entry:

entryi j
k = 1

p

ak bk  = 
k = 1

p

entryi j ak bk  = 
k = 1

p

entryi ak entryj bk = 
k = 1

p

ai k bk j .

SAME!!

the ij entry is just
aibj



Spectral decomposition for symmetric matrices.   Let An n be symmetric (and positive semi-definite, for 
the applications Prof. Alberts will talk about tomorrow).  Order the eigenvalues as

1 2  ... n

and let 
u1, u2, ... , un

be corresponding orthonormal eigenvectors in n. Let P be the orthogonal matrix 

P = u1, u2, ... un   

with
A P = P D 

where D is the diagonal matrix with diagonal entries  1 2  ... n.   

Then

A = P D PT

= 
u1 u2

...
un

1 0 ... 0

0 2 ... 0

: ... ... 0

0 0 ... n

u1
T 

u2
T

:

un
T

  

=

  

1 u1

  

  

  

2u2

  

  

...

  

nun

  

  

u1
T 

u2
T

:

un
T

A = 1 u1 u1
T  2 u2 u2

T  ...  nun un
T  

This is the spectral decomposition of A.  "Principal component analysis" of covariance or correlation 
matrices makes use of the fact that if only a few of the eigenvalues of A are large and the rest are near zero, 
then the corresponding leading terms in the expression above are a good approximation for the matrix A.  
And projection of the data onto the span of the corresponding important eigenvectors is a good facsimile of
the original data, potentially in a much lower dimensional space.



Testing spectral decomposition in a small example from last week  (like one of your homework exercises).

A =
2

5
2

5
2

2

         E
=

9
2

= span
1

1
    E

=
1
2

= span
1

1

u1 = 
1

2

1

1
   u2 = 

1

2

1

1
 

1 u1 u1
T  2 u2 u2

T = 
9
2

 
1

2

1

1
1

2
1 1   

1
2

 
1

2

1

1
1

2
1 1   

=
9
4

1 1

1 1
 

1
4

1 1

1 1
 =

2
5
2

5
2

2
 !!!!



Example with a covariance matrix.  Consider the following four data vectors in 5.  Note that each data 
vector already has mean equal to zero.  What is the effective "dimension" of this data set, and in which 
directions is the "variance" of the data the greatest?  (This is a very small example of "big data".  :-) )

2

0

0

2

0

,  

0

1

1

0

0

,

0

1

1

0

0

,

2

0

0

2

0

 .

a) Verify that the covariance matrix is given by

A =

8 0 0 8

0 2 2 0

0 2 2 0

8 0 0 8

.

b)  Verify by observation the following orthogonal eigendata for A:

E
= 16

= span

1

0

0

1

,   E
= 4

= span

0

1

1

0

 ,  E
= 0

= span

1

0

0

1

,

0

1

1

0

.
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 original data vectors: 

2
0
0
2
0

,  

0
1
1

0
0

,

0
1

1
0
0

,

2
0
0
2

0

 .

 covariance matrix A =

8 0 0 8
0 2 2 0
0 2 2 0
8 0 0 8

E
= 16

= span

1
0
0
1

,   E
= 4

= span

0
1
1

0

 ,  E
= 0

= span

1
0
0
1

,

0
1
1
0

   

c) Therefore only two of the eigenvectors contribute to the spectral decomposition of A (and our data is 
really only 2-dimensional, even though the data vectors lie in 5.  This is the "dimension reduction" of 
PCA.)  Verify the spectral decomposition of A, using the outer product.

d)   Find and plot the coordinates in 2 of the original four data vectors, with respect to the the subspace 
spanned by the two dominating eigenvectors.  (In the general case where the other eigenvalues were small 
but non-zero, these would be the coordinates of the projections of the original data vectors, onto the span 
of the eigenvectors with large eigenvalues.)  Compare the geometry of this coordinate picture in 2 with 
the geometry of the original four points in 5!
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The 4 attributevectors corresponded to 5 individuals Reading g
across the rows of the original list the attribute vectors in R
for each of the 5 individuals are

Hot lionp
Find the coordinates of these vectors with respect
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orthonormal eigenbasis for the principal eigenvectors sketch
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