What we may have realized in the previous exercise is the very important:

Fundamental Fact A vector equation (linear combination problem)

x4 +x,a,+..+x a=>b in R

is equivalent to a system of iinear equations for the unknown weights x,, x,, .... x ; in fact the system of

™

linear equations has augfented matrix given by

[Ql a ..a b]

=2 “n =
(where we have expressed the augmented matrix in terms of its columns). In particular, b can be generated
by a linear compination of @, &, ... a4 if and only if there exists a solution to the linear system
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3¢) Use an augmented matrix calculation to find what condition needs to hold on vectors b so that

1 -1
. (") How does this computation relate to the (implicit) way we've been
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expressing planes in R3?
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In case we want to sketch anything related to Exercise 3:




Tues Aug 28
+ 1.4 the matrix equation 4 x =b. How the reduced row echelon form of (just) 4 relates to

solvability questions (leads into section 1.5).
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Recall

Fundamental Fact A vector equation (linear combination problem)

X, 4 +x2%+...+xngn=g

is actually a system of linear equations for the unknown weights x,, x,, .... x ; in fact the system of linear

equations has augmented matrix given by
[41 a ..a b ]

=2 “n =
(where we have expressed the augmented matrix in terms of its columns). In particular, b can be generated
by a linear combination of @, &, ... a4 if and only if there exists a solution to the linear system

corresponding to the augmented matrix above.

We should check this carefully today, assuming we didn't do so on Monday:

Definition (from 1.4) If 4 is an m X n matrix, with columns g ..a (inR")andifx € R", then

a
1 b —25
A x is defined to be the linear combination of the columns, with weights given by the corresponding entries

of x. In other words,

! gz—l— X a

(This will give us a way to abbreviate vector equations, for example.)

Ax = x gl—l-xz



Definition. Let u, ¥ be vectors in R”. Then the dot product u + y is defined by
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Computational Theorem: (This is usually a quicker way to compute 4 x. Let If 4 be an m X n matrix,
withrows R, R,, ... R . Then 4 x may also be computed using the rows of 4 and the dot product:
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Exercise 1a) Compute both ways:
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Exercise 1b) Write as a matrix times a vector:
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Exercise 2) Rewrite the following vector equations from yesterday and last week as matrix equations.
Also write down the augmented matrix for these systems.
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What the solvability and number of solutions to a matrix equation 4 x = b has to do with the reduced row
echelon form of 4 (i.e. of the unaugmented matrix). Let's explore.

Exercise 3 Find all solutions to the system of 3 linear equations in 5 unknowns
(Slm.'r ‘ve c,(&SS.- .

Hos s rem'cw'o‘F x1—2x2—|-3x3—|-2x4—|—x5=10
ola 0 rtHon *F‘DV‘ 2x1—4x2+8x3—|-3x4—|—10x5=7
rref.) 3x1—6x2+10x3+6x4—|—5x5=27.

Here's the augmented matrix:

1 -2 32 1|10
2 -4 83 10| 7

3 -6 10 6 5|27

Find the reduced row echelon form of this augmented matrix and then backsolve to explicitly parameterize
the solution set. (Hint: it's a two-dimensional plane in [R3, if that helps. :-))



Maple says:
;> with(LinearAlgebra) : # matrix and linear algebra library
> A= Matrix(3, 5, [1,-2, 3, 2, 1,
2,-4, 8, 3, 10,
3,-6, 10, 6, 5]):
b = Vector([10, 7, 27]) :

# a vertical line between the end of A and the start of b
ReducedRowEchelonForm({A|b));

1 -2 32 110
2 -4 8310 7
3 -6 10 6 5 27
1 200 3 5
0 010 2 -3
0 001 -4 7

=> LinearSolve(A, b);

# Maple's way of writing free parameters, which actually makes

# the same way too.

[ s5+2 ¢ -3 ¢ |
-2 -5

t

)
-3—2 ¢
-5
7T4+4 ¢
-5

t
-5

(4|b);  # the mathematical augmented matrix doesn't actually have

# this command will actually write down the general solution, using

# some sense. Generally when there are free parameters involved,

# there will be equivalent ways to express the solution that may

# look different. But usually Maple's version will look like yours,

# because it's using the same algorithm and choosing the free parameters
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Exercise 4 We are interested in the matrix equation A4 x = b for the matri

right hand sides Ua;g?cei\ o G e s
27 -10 -19 13 10 2 13 54 Honng

A=]13 -4 -8 6 rref(d)=|0 1 -2 -3 1

00 0 00

1o 2 1 3

Let's consider three different linear systems for which A is the coefficient matrix. In the first one, the right
hand sides are all zero (what we call the "homogeneous" problem), and I have carefully picked the other

two right hand sides. The three right hand sides are separated by the dividing line below:
27 -10 -19 13|10 7 7 10 2 13/0/0/0
13 -4 -8 6[{003 rref(C)=10 1 -2 -3 1/0/0/1

C =
10 2 1 3/000 00 0 0o0[o|L]0

4a) Find the solution sets for each of th,gthree ystems;using the reduced row echelon form of C.
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