Fractal Example

Math 2270-1
September 14, 2005
This document is written using Maple. It is an example of how might do part B \#2, assuming you hadn't found a template for the "gothic tree" (below) anywhere and were making it up....

Step 1: I opened the maple file
http://www.math.utah.edu/~fractals/Lpictures.mws
and executed the worksheet. This loaded the TESTMAP and AFFINE1 procedures which I shall use to define the transformations and make the L-picture diagrams.

Step 2: Stealing and modifying commands from the file
http://www.math.utah.edu/~fractals/Sierpinski.mws
I created a picture five affine transformations which, it seemed to me, would generate a tree-like fractal, and then encoded them using AFFINE1

```
> f1:=P->AFFINE1(P,-.6,0,0,.6,.85,.2);
    f2:=P->AFFINE1(P,.2,.5,-.6,.3,.3,.3);
    f3:=P->AFFINE1(P,-.1,-.4,.6,.3,.5,.7);
    f4:=P->AFFINE1(P,-.1,-.4,.05,-.05,.6,.5);
    f5:=P->AFFINE1(P,.05,.05,-.1,.5,.5,0);
    fl:=P->AFFINE1(P,-0.6, 0, 0, 0.6, 0.85, 0.2)
    f2:=P->AFFINE1(P, 0.2, 0.5, -0.6, 0.3, 0.3, 0.3)
    f3:= P A AFFINE1(P, -0.1, -0.4, 0.6, 0.3, 0.5, 0.7)
    f4:= P->AFFINE1(P,-0.1,-0.4, 0.05,-0.05, 0.6, 0.5)
    f5:= P -> AFFINE1(P, 0.05, 0.05, -0.1, 0.5, 0.5, 0)
```

Now I tested the transformations with TESTMAP:
> TESTMAP ([f1,f2,f3,f4,f5]);

Let's see what fractal this generates!
> $S:=\{[0,0]\}: \#$ initial set consisting of one point 5^7; \#want less than 200,000 points 78125
> for i from 1 to 7 do S1:=map (f1,S);
S2: =map (f2, S);
S3:=map (f3,S);
S4:=map (f4,S);
S5:=map (f5,S);
S:=`union`(S1,S2,S3,S4,S5);
od:
> pointplot(S,symbol=point,scaling=constrained, axes=none,title=`Haunted tree');

Note on contractions! In order for the theory we've talking about to apply, each transformation must be a contraction of the plane. There is actually a computation you can do to check whether you're O.K. If A is the matrix of your transformation function and transpose (A) is the transposition of it which interchanges rows and columns, then the eigenvalues of transpose (A) times A are the squares of the maximum and minimum stretching (which varies according to direction) - you want the larger of these numbers to be less than one! For example, the matrix of the left-most box above is

```
> with(linalg):
    A:=matrix(2, 2, [.2,-.06,.5,.3]);
    eigenvals(transpose(A) &*A) ;
Warning, the protected names norm and trace have been redefined and unprotected
```



```
    0.02243, 0.3612
> sqrt(.3612); #maximum stretch factor for A
    0.6010
```

We'll understand the math which I just claimed, by the end of the course!

