Name	SOLUTIONS

Math 2270-1

Exam 2

November 4, 2005

This exam is closed-book and closed-note. You may not use a calculator which is capable of doing linear algebra computations. In order to receive full or partial credit on any problem, you must show all of your work and **justify your conclusions.** There are 100 points possible, and the point values for each problem are indicated in the right-hand margin. Good Luck!

1a) Consider the matrix system

$$\begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} r \\ s \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$$

Find the least squares solution to this problem.

(10 points)

Normal eqta:
$$\begin{bmatrix} 1 & -1 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} r \\ 5 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$$

$$\begin{bmatrix} 11 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} r \\ s \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$$

$$\begin{bmatrix} r \\ s \end{bmatrix} = \frac{1}{33-9} \begin{bmatrix} 3 & -3 \\ -3 & 11 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \end{bmatrix}$$

$$= \frac{1}{24} \begin{bmatrix} 0 \\ -18+66 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

1b) The matrix system in part (1a) could have arisen as a least squares problem in the context of trying to get a best-line approximation to a data set consisting of the 3 points

$$\left\{ \begin{bmatrix} -1\\ 3 \end{bmatrix}, \begin{bmatrix} 1\\ 0 \end{bmatrix}, \begin{bmatrix} 3\\ 3 \end{bmatrix} \right\}.$$

Explain the meaning of "r" and "s" in this case. Then, sketch the three points below and the least-squares line fit.

(10 points)

want
$$y=mx+b$$

$$\begin{bmatrix} 3 \\ 0 \\ 3 \end{bmatrix} = m \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

or, rendering
$$m \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 3 \end{bmatrix}$$

since solin is
$$\begin{bmatrix} r \\ 5 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$

deduce line is y=0x+2=2

2a) Define the *image of T*, and the *kernel of T*, for T:
$$V \rightarrow W$$
 a linear transformation.

(6 points)

2b) For a linear transformation T:V->W, prove that the image of T is a subspace.

(6 points)

Thus
$$\exists u \in V$$
, $\exists u \in V$, $\exists u \in$

So WtZ E image (T)

Then $\exists u \in V$, T(u) = w. Then T(ku) = kT(u) = kw, so kw 2c) Let $\{f_1, f_2, f_3\}$ be a set of three linearly independent vectors in a linear space V. Suppose that the

element g of V is not in the span of $\{f_1, f_2, f_3\}$. Prove that $\{g, f_1, f_2, f_3\}$ is a set of four linearly independent vectors.

(8 points)

Case I: if
$$c_0 = 0$$
 then $c_1f_1 + c_2f_2 + c_3f_3 = 0$
So $c_1 = c_2 = c_3 = 0$ since f_1, f_2, f_3 lining $c_0 = c_1 = c_2 = c_3 = 0$

$$c_0 q = -c_1 f_1 - (2 f_2 - c_3 f_3)$$

$$q = -\frac{c_1}{c_0} f_1 - \frac{c_2}{c_0} f_2 - \frac{c_3}{c_0} f_3$$

But this case cannot occur because we assumed of was not in the span of fifz f3.

Thus only case I occurs,
and
$$c_0 = c_1 = c_2 = c_3 = 0$$
 so g_1, f_1, f_2, f_3 is a linearly independent set

3) Let V be the two-dimensional function vector space with basis $\beta = \{e^t, e^{(-t)}\}$. Let T be the linear transformation from V to V defined by

$$T(f) = f' + 3 f$$

("T of f is the derivative of f plus 3 times f").

3a) Find the matrix B for T with respect to the basis β . (Hint: it's diagonal!)

T(e^t) =
$$4e^{t} + 0e^{-t}$$
; T(e^{-t}) = $-e^{-t} + 3e^{-t} = 0e^{t} + 2e^{-t}$

So
$$B = \begin{bmatrix} T(e^t) \\ 0 \end{bmatrix} \begin{bmatrix} T(e^t) \\ 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}$$

3b) Another basis for V is given by $\kappa = \{\cosh(t), \sinh(t)\}$. Recall that $\cosh(t) = \frac{1}{2} e^{t} + \frac{1}{2} e^{(-t)}$ and

 $\sinh(t) = \frac{1}{2} e^t - \frac{1}{2} e^{(-t)}$. What is the change of basis matrix S which converts κ -coordinates into β

-coordinates?

$$S = \begin{bmatrix} [\cosh t]_{0} \\ \end{bmatrix} \begin{bmatrix} [\sinh t]_{0} \\ \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$
 (7 points)

3c) Find the matrix for the linear tranformation T(f), with respect to the basis κ .

(7 points)

$$[T]_{\chi} = \int_{-\frac{1}{2}}^{-\frac{1}{2}} \frac{S}{S} \frac{S}{S+\chi}$$

$$= -2 \begin{bmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 2 \\ 1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

check: T(wit) = sinht +3 with t T(sinht) = with +3 sinh t 4a) Find an orthonormal basis for R^3 by using the Gram-Schmidt algorithm on the three vectors

$$\left[\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right].$$

Hint: The first two vectors in the set are already orthogonal to each other.

$$\vec{W}_{1} = \frac{\vec{V}_{1}}{||\vec{V}_{1}||} = \frac{1}{||\vec{V}_{2}||} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

$$\vec{W}_{2} = \frac{\vec{V}_{2}}{||\vec{V}_{2}||} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad (\text{sinu } \vec{V}_{2} \perp \vec{w}_{1})$$

$$(\text{Sinu } \vec{V}_{2} \perp \vec{w}_{1})$$

$$\vec{w}_{3} = \vec{v}_{3} - (\vec{v}_{3} \cdot \vec{w}_{1}) \vec{w}_{1} - (\vec{v}_{3} \cdot \vec{w}_{2}) \vec{w}_{2} / ||\vec{v}_{0}||$$

$$= \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \frac{1}{2} (-1) \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} - 1 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} / ||\vec{v}_{0}|| = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\ 1/2 \end{bmatrix} = \frac{1}{||\vec{v}_{0}||} \begin{bmatrix} 1/2 \\ 0 \\$$

4b) What is the A = QR factorization for the matrix

$$\begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
?

(10 points)

(alternale way to get R:

$$A = QR$$

 $\Rightarrow QTA = QTQR = IR = R$.; $QTA = \begin{bmatrix} -1/v_2 & 0 & |v_2| \\ 0 & 1 & 0 \\ |v_2| & 0 & |v_2| \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & |v_2| \end{bmatrix} = \begin{bmatrix} \sqrt{v_2} & 0 & |v_2| \\ 0 & 0 & |v_2| \end{bmatrix}$

5) True-False: 5 points for each problem; two points for the correct answer and three points for the explanation.

(20 points)

5a) If $\{u,v,w,z\}$ is an orthonormal collection of vectors, then $\|u+v+w+z\|=2$.

TRUE!
$$|(u+v+w+z)|^2 = (\vec{u}+\vec{v}+\vec{\omega}+\vec{z}) \cdot (\vec{u}+\vec{v}+\vec{\omega}+\vec{z})$$

 $= \vec{u} \cdot (\vec{u}+\vec{v}+\vec{\omega}+\vec{z}) = \vec{u}\cdot\vec{u}+\vec{v}$
 $+ \vec{v}\cdot (70) + \vec{v}\cdot\vec{u}+\vec{v}$
 $+ \vec{\omega}\cdot (70) + \vec{\omega}\cdot\vec{u}+\vec{v}$
 $+ \vec{z}\cdot (70) + \vec{z}\cdot\vec{z}+\vec{v}$
 $+ \vec{z}\cdot \vec{z}+\vec{v}$

5b) If A is an invertible matrix, then A^{T} is too. In fact,

$$[A^T]^{-I} = [A^{-I}]^T.$$

TRUE!
$$A A^{-1} = I$$
, $A^{-1}A = I$
 $\Rightarrow (A A^{-1})^{T} = I^{T} = I$ and $(A^{-1}A)^{T} = I$ so $(A^{T})^{-1} = (A^{-1})^{T}$!
 $(A^{-1})^{T}A^{T}$ $A^{T}(A^{-1})^{T}$

5c) If T is the projection in R^3 to the plane x+y+z=0, then there is a basis for R^3 for which the matrix of this projection transformation is

$$\begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 0
 \end{bmatrix}.$$

TRUE! pick
$$\vec{V}_1, \vec{V}_2$$
 in the plane (and ind.), so $\vec{T}\vec{V}_1 = \vec{V}_1$, $\vec{T}\vec{V}_2 = \vec{V}_2$

pich \vec{Z} I to the plane, so $\vec{T}\vec{Z} = \vec{O}$

then $[T]_{\vec{V}_1, \vec{V}_2, \vec{Z}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

5d) If the dimension of V is 6 and the dimension of W is 2, and if L:V-->W is linear, then the dimension of the kernel of L is at most 4.